OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8397–8416

A family of Nyquist pulses for coherent optical communications

Benoît Châtelain, Charles Laperle, Kim Roberts, Mathieu Chagnon, Xian Xu, Andrzej Borowiec, François Gagnon, and David. V. Plant  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8397-8416 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2538 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new family of Nyquist pulses for coherent optical single carrier systems is introduced and is shown to increase the nonlinearity tolerance of dual-polarization (DP)-QPSK and DP-16-QAM systems. Numerical investigations for a single-channel 28 Gbaud DP-16-QAM long-haul system without optical dispersion compensation indicate that the proposed pulse can increase the reach distance by 26% and 19%, for roll-off factors of 1 and 2, respectively. In multi-channel transmissions and for a roll-off factor of 1, a reach distance increase of 20% is reported. Experimental results for DP-QPSK and DP-16-QAM systems at 10 Gbaud confirm the superior nonlinearity tolerance of the proposed pulse.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 9, 2011
Revised Manuscript: December 20, 2011
Manuscript Accepted: December 23, 2011
Published: March 27, 2012

Benoît Châtelain, Charles Laperle, Kim Roberts, Mathieu Chagnon, Xian Xu, Andrzej Borowiec, François Gagnon, and David. V. Plant, "A family of Nyquist pulses for coherent optical communications," Opt. Express 20, 8397-8416 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Torrengo, S. Makovejs, D. S. Millar, I. Fatadin, R. I. Killey, S. J. Savory, and P. Bayvel, “Influence of pulse shape in 112-Gbit/s WDM PDM-QPSK transmission,” IEEE Photon. Technol. Lett.22(23), 1714–1716 (2010). [CrossRef]
  2. S. Makovejs, E. Torrengo, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Comparison of pulse shapes in a 224 Gbit/s (28 Gbaud) PDM-QAM16 long-haul transmission experiment,” in Proceedings of OFC 2011, paper OMR5 (2011).
  3. C. Behrens, S. Makovejs, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission,” Opt. Express19(14), 12879–12884 (2011). [CrossRef] [PubMed]
  4. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22(3), 185–187 (2010). [CrossRef]
  5. X. Zhou, L. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. Borel, and K. Carlson, “8x450-Gb/s, 50-GHz-spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Proceedings of OFC 2011, paper PDPB3 (2011).
  6. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, B. Nebendahl, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse modulation transmitter generating rectangular shaped spectra of 112 Gbit/s 16QAM signals,” in Proceedings of SPPCom 2011, paper SPMA5 (2011).
  7. K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol.17(5), 387–394 (2011). [CrossRef]
  8. B. Farhang-Boroujeny, “A square-root Nyquist (M) filter design for digital communication systems,” IEEE Trans. Signal Process.56(5), 2127–2132 (2008). [CrossRef]
  9. P. S. Rha and S. Hsu, “Peak-to-average ratio (PAR) reduction by pulse shaping using a new family of generalized raised cosine filters,” in Proceedings of VTC 2003 (2003).
  10. B. Farhang-Boroujeny and G. Mathew, “Nyquist filters with robust performance against timing jitter,” IEEE Trans. Signal Process.46(12), 3427–3431 (1998). [CrossRef]
  11. A. Assalini and A. M. Tonello, “Improved Nyquist pulses,” IEEE Commun. Lett.8(2), 87–89 (2004). [CrossRef]
  12. K. Roberts, M. O’Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol.27(16), 3546–3559 (2009). [CrossRef]
  13. B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40- and 100-Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett.22(22), 1641–1643 (2010).
  14. B. Châtelain, C. Laperle, D. Krause, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “Optimized pulse shaping for intra-channel nonlinearities mitigation in a 10 Gbaud dual-polarization 16-QAM system,” in Proceedings of OFC 2011, paper OWO5 (2011).
  15. H. Nyquist, “Certain topics in telegraph transmission theory,” AIEE Trans.47(2), 617–644 (1928).
  16. J. G. Proakis, Digital Communications, 4th ed. (McGraw Hill, New-York, 2001).
  17. F. Zhang, “XPM Statistics in 100% Precompensated WDM Transmission for OOK and DPSK Formats,” IEEE Photon. Technol. Lett.21(22), 1707–1709 (2009). [CrossRef]
  18. R. J. Essiambre and P. J. Winzer, “Impact of fiber nonlinearities on advanced modulation formats using electronic pre-distortion,” in Proceedings of OFC 2006, paper OWB1 (2006).
  19. C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear Distortion in Transmission of Higher Order Modulation Formats,” IEEE Photon. Technol. Lett.22(15), 1111–1113 (2010). [CrossRef]
  20. Y. Jiang, X. Tang, J. C. Cartledge, and K. Roberts, “Electronic Pre-Compensation of Narrow Optical Filtering for OOK, DPSK and DQPSK Modulation Formats,” J. Lightwave Technol.27(16), 3689–3698 (2009). [CrossRef]
  21. M. J. D. Powell, “A fast algorithm for nonlinearly constrained optimization calculations,” Lect. Notes Math.630, 144–157 (1978). [CrossRef]
  22. F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun.34(5), 423–429 (1986). [CrossRef]
  23. A. N. D’Andrea and M. Luise, “Design and analysis of a jitter-free clock recovery scheme for QAM systems,” IEEE Trans. Commun.41(9), 1296–1299 (1993). [CrossRef]
  24. A. N. D’Andrea, U. Mengali, and R. Reggiannini, “The modified Cramer-Rao bound and its application to synchronization problems,” IEEE Trans. Commun.42(234), 1391–1399 (1994). [CrossRef]
  25. X. Zhou, X. Chen, W. Zhou, Y. Fan, H. Zhu, and Z. Li, “All-digital timing recovery and adaptive equalization for 112 Gbit/s POLMUX-NRZ-DQPSK optical coherent receivers,” J. Opt. Commun. Netw.2(11), 984–990 (2010). [CrossRef]
  26. A. Leven, N. Kaneda, and S. Corteselli, “Real-time implementation of digital signal processing for coherent optical digital communication systems,” IEEE J. Sel. Top. Quantum Eelectron.16(5), 1227–1234 (2010). [CrossRef]
  27. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with applications to burst digital transmission,” IEEE Trans. Inf. Theory29(4), 543–551 (1983). [CrossRef]
  28. D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun.28(11), 1867–1875 (1980). [CrossRef]
  29. K. Onohara, Y. Miyata, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “Soft decision FEC for 100G transport systems,” in Proceedings of OFC 2010, paper OThL1 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited