OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8457–8465

Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application

Sylvain Girard, Marilena Vivona, Arnaud Laurent, Benoît Cadier, Claude Marcandella, Thierry Robin, Emmanuel Pinsard, Aziz Boukenter, and Youcef Ouerdane  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8457-8465 (2012)
http://dx.doi.org/10.1364/OE.20.008457


View Full Text Article

Enhanced HTML    Acrobat PDF (843 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the efficiencies of two different approaches to increase the radiation hardness of optical amplifiers through development of improved rare-earth (RE) doped optical fibers. We demonstrated the efficiency of codoping with Cerium the core of Erbium/Ytterbium doped optical fibers to improve their radiation tolerance. We compared the γ-rays induced degradation of two amplifiers with comparable pre-irradiation characteristics (~19 dB gain for an input power of ~10 dBm): first one is made with the standard core composition whereas the second one is Ce codoped. The radiation tolerance of the Ce-codoped fiber based amplifier is strongly enhanced. Its output gain decrease is limited to ~1.5 dB after a dose of ~900 Gy, independently of the pump power used, which authorizes the use of such fiber-based systems for challenging space missions associated with high total doses. We also showed that the responses of the two amplifiers with or without Ce-codoping can be further improved by another technique: the pre-loading of these fibers with hydrogen. In this case, the gain degradation is limited to 0.4 dB for the amplifier designed with the standard composition fiber whereas 0.2 dB are reported for the one made with Ce-codoped fiber after a cumulated dose of ~900 Gy. The mechanisms explaining the positive influences of these two treatments are discussed.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2330) Fiber optics and optical communications : Fiber optics communications
(160.2220) Materials : Defect-center materials
(350.5610) Other areas of optics : Radiation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 11, 2012
Revised Manuscript: February 19, 2012
Manuscript Accepted: February 19, 2012
Published: March 27, 2012

Citation
Sylvain Girard, Marilena Vivona, Arnaud Laurent, Benoît Cadier, Claude Marcandella, Thierry Robin, Emmanuel Pinsard, Aziz Boukenter, and Youcef Ouerdane, "Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application," Opt. Express 20, 8457-8465 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8457


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Girard, B. Tortech, E. Regnier, M. Van Uffelen, A. Gusarov, Y. Ouerdane, J. Baggio, P. Paillet, V. Ferlet-Cavrois, A. Boukenter, J.-P. Meunier, F. Berghmans, J. R. Schwank, M. R. Shaneyfelt, J. A. Felix, E. W. Blackmore, and H. Thienpont, “Proton- and gamma-induced effects on erbium- doped optical fibers,” IEEE Trans. Nucl. Sci.54(6), 2426–2434 (2007). [CrossRef]
  2. G. M. Williams, M. A. Putnam, C. G. Askins, M. E. Gingerich, and E. J. Friebele, “Radiation effects in erbium-doped optical fibres,” Electron. Lett.28(19), 1816–1818 (1992). [CrossRef]
  3. M. Ott, “Radiation effects expected for fiber laser/amplifier and rare-earth doped optical fibers,” NASA GSFC, Parts, Packaging and Assembly Technologies Office Survey Report, 2004.
  4. B. P. Fox, K. Simmons-Potter, W. J. Thomes, and D. A. V. Kliner, “Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents,” IEEE Trans. Nucl. Sci.57(3), 1618–1625 (2010). [CrossRef]
  5. B. P. Fox, K. Simmons-Potter, W. J. Thomes, D. C. Meister, R. P. Bambha, and D. A. V. Kliner, “Temperature and dose-rate effects in gamma irradiated rare-earth doped fibers,” Proc. SPIE7095, 70950B, 70950B-8 (2008). [CrossRef]
  6. S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, A. Boukenter, J.-P. Meunier, J. R. Schwank, M. R. Shaneyfelt, P. E. Dodd, and E. W. Blackmore, “Radiation effects on Ytterbium- and Ytterbium/Erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci.56(6), 3293–3299 (2009). [CrossRef]
  7. T. S. Rose, D. Gunn, and G. C. Valley, “Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements,” J. Lightwave Technol.19(12), 1918–1923 (2001). [CrossRef]
  8. M. Li, J. Ma, L. Y. Tan, Y. P. Zhou, S. Y. Yu, J. J. Yu, and C. Che, “Investigation of the irradiation effect on erbium-doped fiber amplifiers composed by different density erbium-doped fibers,” Laser Phys.19(1), 138–142 (2009). [CrossRef]
  9. A. Gusarov, M. Van Uffelen, M. Hotoleanu, H. Thienpont, and F. Berghmans, “Radiation sensitivity of EDFAs based on highly Er-doped fibers,” J. Lightwave Technol.27(11), 1540–1545 (2009). [CrossRef]
  10. M. Alam, J. Abramczyk, P. Madasamy, W. Torruellas, and A. Sanchez, “Fiber amplifier performance in gamma radiation environment,” OSA/Optical Fiber Conference 2007, paper OMF4.
  11. J. Ma, M. Li, L. Tan, Y. Zhou, S. Yu, and Q. Ran, “Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment,” Opt. Express17(18), 15571–15577 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-18-15571 . [CrossRef] [PubMed]
  12. M. Vivona, S. Girard, C. Marcandella, T. Robin, B. Cadier, M. Cannas, A. Boukenter, and Y. Ouerdane, “Influence of Ce codoping and H2 pre-loading on Er/Yb-doped fiber: radiation response characterized by confocal micro-luminescence,” J. Non-Cryst. Solids357(8-9), 1963–1965 (2011). [CrossRef]
  13. K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. L. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-resistant erbium-doped fiber for spacecraft applications,” IEEE Trans. Nucl. Sci.55(4), 2213–2215 (2008). [CrossRef]
  14. K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, A. F. Kosolapov, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and E. M. Dianov, “Radiation resistant Er-doped fibers: optimization of pump wavelength,” IEEE Photon. Technol. Lett.20(17), 1476–1478 (2008). [CrossRef]
  15. S. Girard, L. Mescia, M. Vivona, A. Laurent, Y. Ouerdane, C. Marcandella, F. Prudenzano, A. Boukenter, T. Robin, P. Paillet, V. Goiffon, B. Cadier, M. Cannas, and R. Boscaino, “Coupled experiment/simulation approach for the design of radiation-hardened rare-earth doped optical fibers and amplifiers,” IEEE Trans. Nucl. Sci. (submitted to).
  16. G. M. Williams and E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements,” IEEE Trans. Nucl. Sci.45(3), 1531–1536 (1998). [CrossRef]
  17. E. J. Friebele, C. G. Askins, and M. E. Gingerich, “Effect of low dose rate irradiation on doped silica core optical fibers,” Appl. Opt.23(23), 4202–4208 (1984). [CrossRef] [PubMed]
  18. S. Girard, Y. Ouerdane, C. Marcandella, A. Boukenter, S. Quenard, and N. Authier, “Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain,” J. Non-Cryst. Solids357(8-9), 1871–1874 (2011). [CrossRef]
  19. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys.54(7), 3743–3762 (1983). [CrossRef]
  20. H. Henschel, O. Kohn, H. U. Schmidt, J. Kirchof, and S. Unger, “Radiation-induced loss of rare earth doped silica fibres,” IEEE Trans. Nucl. Sci.45(3), 1552–1557 (1998). [CrossRef]
  21. B. Brichard, A. F. Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effect in erbium doped fibers for space gyroscopes,” in Proc. of the 16th International Conference on Optical Fiber Sensors (2003).
  22. M. Vivona, S. Girard, T. Robin, B. Cadier, L. Vaccaro, M. Cannas, A. Boukenter, and Y. Ouerdane, “Influence of Ce3+ codoping on the photoluminescence excitation channels of phosphosilicate Er/Yb doped glasses,” IEEE Photon. Technol. Lett. (in press), 2012. Digital Object Identifier: 10.1109/LPT.2011.2182644 [CrossRef]
  23. A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids3(1), 54–114 (1970). [CrossRef]
  24. J. S. Stroud, “Color-Center Kinetics in Cerium-Containing Glass,” J. Chem. Phys.43(7), 2442–2450 (1965). [CrossRef]
  25. J. S. Stroud, “Color Centers in a Cerium-Containing Silicate Glass,” J. Chem. Phys.37(4), 836–841 (1962). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited