OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8472–8484

An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating

Maria Konstantaki, Argyro Klini, Demetrios Anglos, and Stavros Pissadakis  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8472-8484 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new ethanol vapor detection probe based on an optical fiber long period grating overlaid with a zinc oxide (ZnO) nanorods layer is presented. The ZnO nanorod layer was developed onto the cladding of the fiber using aqueous chemical growth, seeded by a thin layer of metallic Zn. The growth of the ZnO nanorods overlayer onto the long period grating cladding is monitored in real time for investigating its effect on the spectral properties of the device and its subsequent role in the sensing mechanism. Results are presented, on the correlation between the growth time of the ZnO layer and the ethanol vapor detection performance. Reversible spectral changes of the notch extinction ratio of more than 4dB were recorded for ~50Torr of ethanol vapor concentration. In addition, photoluminescence emission studies of the ZnO overlayer performed simultaneously with the optical fiber spectral measurements, revealed significant ethanol induced changes in the intensity of the bandgap peak.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6490) Optics at surfaces : Spectroscopy, surface
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: February 6, 2012
Manuscript Accepted: February 7, 2012
Published: March 27, 2012

Maria Konstantaki, Argyro Klini, Demetrios Anglos, and Stavros Pissadakis, "An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating," Opt. Express 20, 8472-8484 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Bansal and M. El-Sherif, “Intrinsic optical-fiber sensor for nerve agent sensing,” IEEE Sens. J.5(4), 648–655 (2005). [CrossRef]
  2. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006). [CrossRef] [PubMed]
  3. S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express18(12), 13227–13238 (2010). [CrossRef] [PubMed]
  4. J. Zhang, X. Tang, J. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express16(11), 8317–8323 (2008). [CrossRef] [PubMed]
  5. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett.87(23), 234105 (2005). [CrossRef]
  6. Z. Gu, Y. Xu, and K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Opt. Lett.31(16), 2405–2407 (2006). [CrossRef] [PubMed]
  7. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt.45(19), 4567–4571 (2006). [CrossRef] [PubMed]
  8. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and O2 using Tin Oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.)15(12), 997–1000 (2003). [CrossRef]
  9. K. S. Yoo, S. H. Park, and J. H. Kang, “Nano-grained thin-film indium tin oxide gas sensors for H2 detection,” Sens. Actuators B Chem.108(1-2), 159–164 (2005). [CrossRef]
  10. G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, “Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B Chem.124(1), 187–191 (2007). [CrossRef]
  11. W.-Y. Wu, J.-M. Ting, and P.-J. Huang, “Electrospun ZnO nanowires as gas sensors for ethanol detection,” Nanoscale Res. Lett.4(6), 513–517 (2009). [CrossRef] [PubMed]
  12. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett.84(18), 3654–3656 (2004). [CrossRef]
  13. N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film,” Opt. Express18(11), 11859–11866 (2010). [CrossRef] [PubMed]
  14. D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, “Random laser action in organic/inorganic nanocomposites,” J. Opt. Soc. Am. B21(1), 208–213 (2004). [CrossRef]
  15. N. N. Lathiotakis, A. N. Andriotis, and M. Menon, “Codoping: a possible pathway for inducing ferromagnetism in ZnO,” Phys. Rev. B78(19), 193311 (2008). [CrossRef]
  16. C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem.130(1), 531–537 (2008). [CrossRef]
  17. W. Zhang, “Automotive fuels from biomass via gasification,” Fuel Process. Technol.91(8), 866–876 (2010). [CrossRef]
  18. C. Liewhiran, A. Camenzind, A. Teleki, S. E. Pratsinis, and S. Phanichphant, “High performance ethanol sensor for control drunken driving based on fame-made ZnO nanoparticles,” in Nano/Micro Engineered and Molecular Systems,2007. NEMS '07. 2nd IEEE International Conference on, 2007, 672–677.
  19. D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chem. Cent. J.4(1), 5 (2010). [CrossRef] [PubMed]
  20. A. Klini, A. Mourka, V. Dinca, C. Fotakis, and F. Claeyssens, “ZnO nanorod micropatterning via laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process.87(1), 17–22 (2007). [CrossRef]
  21. L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express1(2), 128–137 (2011). [CrossRef]
  22. M. Konstantaki and S. Pissadakis, “Optically tunable long period fiber gratings utilizing a photochromic out-cladding overlayer,” Opt. Fiber Technol.17(3), 168–170 (2011). [CrossRef]
  23. E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, “Single crystal ZnO nanowires as optical and conductometric chemical sensor,” J. Phys. D Appl. Phys.40(23), 7255–7259 (2007). [CrossRef]
  24. C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem.140(2), 461–466 (2009). [CrossRef]
  25. Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology20(34), 345502 (2009). [CrossRef] [PubMed]
  26. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express14(1), 19–34 (2006). [CrossRef] [PubMed]
  27. M. Nagao and T. Morimoto, “Adsorption of alcohols on zinc oxide surfaces,” J. Phys. Chem.84(16), 2054–2058 (1980). [CrossRef]
  28. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol.14(5), R49–R61 (2003). [CrossRef]
  29. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006). [CrossRef] [PubMed]
  30. A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci.254(4), 1087–1090 (2007). [CrossRef]
  31. A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt.46(13), 2481–2485 (2007). [CrossRef] [PubMed]
  32. W. Mokwa, D. Kohl, and G. Heiland, “Decomposition of ethanol and acetaldehyde on clean ZnO prism and oxygen faces,” Surf. Sci.117(1-3), 659–667 (1982). [CrossRef]
  33. G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater.2009, 316035 (2009). [CrossRef]
  34. X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett.28(9), 686–688 (2003). [CrossRef] [PubMed]
  35. X. Chu, T. Chen, W. Zhang, B. Zheng, and H. Shui, “Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method,” Sens. Actuators B Chem.142(1), 49–54 (2009). [CrossRef]
  36. D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, “Optical gas sensing through nanostructured ZnO films with different morphologies,” Sens. Actuators B Chem.145(1), 167–173 (2010). [CrossRef]
  37. G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem.80(2), 125–131 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited