OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8485–8495

Strongly interacting photons in asymmetric quantum well via resonant tunneling

H. Sun, S. L. Fan, X. L. Feng, C. F. Wu, S. Q. Gong, G. X. Huang, and C. H. Oh  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8485-8495 (2012)
http://dx.doi.org/10.1364/OE.20.008485


View Full Text Article

Enhanced HTML    Acrobat PDF (1362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an asymmetric quantum well structure to realize strong interaction between two slow optical pulses. The essential idea is the combination of the advantages of inverted-Y type scheme and resonant tunneling. We analytically demonstrate that giant cross-Kerr nonlinearity can be achieved with vanishing absorptions. Owing to resonant tunneling, the contributions of the probe and signal cross-Kerr nonlinearities to total nonlinear phase shift vary from destructive to constrictive, leading to nonlinear phase shift on order of π at low light level. In this structure, the scheme is inherent symmetric for the probe and signal pulses. Consequently, the condition of group velocity matching can be fulfilled with appropriate initial electron distribution.

© 2012 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: February 7, 2012
Revised Manuscript: February 27, 2012
Manuscript Accepted: February 27, 2012
Published: March 27, 2012

Citation
H. Sun, S. L. Fan, X. L. Feng, C. F. Wu, S. Q. Gong, G. X. Huang, and C. H. Oh, "Strongly interacting photons in asymmetric quantum well via resonant tunneling," Opt. Express 20, 8485-8495 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8485


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000).
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79, 135–174 (2007). [CrossRef]
  3. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett.82, 4611–4614 (1999). [CrossRef]
  4. M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005). [CrossRef]
  5. H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett.21, 1936–1938 (1996). [CrossRef] [PubMed]
  6. A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett.94, 063902 (2005). [CrossRef] [PubMed]
  7. I. Friedler, G. Kurizki, and D. Petrosyan, “Giant nonlinearity and entanglement of single photons in photonic bandgap structures,” Europhys. Lett.68, 625–631 (2004). [CrossRef]
  8. I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic band gaps,” Phys. Rev. A71, 023803 (2005). [CrossRef]
  9. D. Petrosyan and G. Kurizki, “Photon-photon correlations and entanglement in doped photonic crystals,” Phys. Rev. A64, 023810 (2001). [CrossRef]
  10. D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A65, 033833 (2002). [CrossRef]
  11. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett.90, 197902 (2003). [CrossRef] [PubMed]
  12. C. Ottaviani, S. Rebić, D. Vitali, and P. Tombesi, “Cross phase modulation in a fiveClevel atomic medium: semiclassical theory,” Eur. Phys. J. D40, 281–296 (2006). [CrossRef]
  13. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A70, 032317 (2004). [CrossRef]
  14. D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atomsin a tripod configuration,” Phys. Rev. A70, 023822 (2004). [CrossRef]
  15. D. Petrosyan, “Towards deterministic optical quantum computation with coherently driven atomic ensembles,” J. Opt. B: Quantum Semiclass. Opt.7, S141–S151 (2005). [CrossRef]
  16. S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett.101, 073602 (2008). [CrossRef] [PubMed]
  17. Y. Guo, S. S. Li, and L. M. Kuang, “Large cross-phase shifts among three slow weak pulses via triple electromagnetically induced transparency,” J. Phys. B44, 065501 (2011). [CrossRef]
  18. A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A72, 062319 (2005). [CrossRef]
  19. Y. F. Bai, W. X. Yang, and X. Q. Yu, “Controllable Kerr nonlinearity with vanishing absorption in a four-level inverted-Y atomic system,” Opt. Commun.283, 5062–5066 (2010). [CrossRef]
  20. B.-W. Shiau, M.-C. Wu, C.-C. Lin, and Y.-C. Chen, “Low-light-level cross-phase modulation with double slow light pulses,” Phys. Rev. Lett.106, 193006 (2011). [CrossRef] [PubMed]
  21. Y. Li, C. Hang, L. Ma, and G. X. Huang, “Controllable entanglement of lights in a five-level system,” Phys. Lett. A354, 1–7 (2006). [CrossRef]
  22. B. P. Hou, L. F. Wei, G. L. Long, and S. J. Wang, “Large cross-phase-modulation between two slow pulses by coupled double dark resonances,” Phys. Rev. A79, 033813 (2009). [CrossRef]
  23. I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A72, 043803 (2005). [CrossRef]
  24. E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Phys. Rev. A83, 033806 (2011). [CrossRef]
  25. L. Deng and M. G. Payne, “Gain-assisted large and rapidly responding Kerr effect using a room-temperature active Raman gain medium,” Phys. Rev. Lett.98, 253902 (2007). [CrossRef] [PubMed]
  26. C. Hang and G. X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express18, 2952–2966 (2010). [CrossRef] [PubMed]
  27. C. Hang and G. X. Huang, “Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium,” Phys. Rev. A82, 053818 (2010). [CrossRef]
  28. B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A83, 022312 (2011). [CrossRef]
  29. B. He, Y. Han, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A83, 053826 (2011). [CrossRef]
  30. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett.91, 183602 (2003). [CrossRef] [PubMed]
  31. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70, 3455–3457 (1997). [CrossRef]
  32. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett.95, 057401 (2005). [CrossRef] [PubMed]
  33. C. H. Yuan and K. D. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett.89, 052113 (2006). [CrossRef]
  34. E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B73, 125344 (2006). [CrossRef]
  35. E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B69, 155316 (2004). [CrossRef]
  36. E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B73, 073305 (2006). [CrossRef]
  37. J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006). [CrossRef]
  38. H. Sun, X.-L. Feng, C. F. Wu, J.-M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy hole spins by non-Abelian geometrical means,” Phys. Rev. B80, 235404 (2009). [CrossRef]
  39. C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B80, 235408 (2009). [CrossRef]
  40. W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A77, 033838 (2008). [CrossRef]
  41. H. Sun, S. Q. Gong, Y. P. Niu, S. Q. Jin, R. X. Li, and Z. Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B74, 155314 (2006). [CrossRef]
  42. S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Kerr nonlinearity in a driven two-subband system in a semiconductor quantum well,” J. Appl. Phys.109, 084312 (2011). [CrossRef]
  43. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vucković, “Controlled phase shifts with a single quantum dot,” Science320, 769–772 (2008). [CrossRef] [PubMed]
  44. H. Sun, X. L. Feng, S. Q. Gong, and C. H. Oh, “Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling,” Phys. Rev. B79, 193404 (2009). [CrossRef]
  45. J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B83, 115445 (2011). [CrossRef]
  46. W.-X. Yang and R.-K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express16, 17161–17170 (2008). [CrossRef] [PubMed]
  47. X. Y. Hao, L. G. Si, C. L. Ding, P. Huang, J. H. Li, and X. X. Yang, “Polarization qubit phase gate between two far-infrared pulses in three-coupled quantum wells,” J. Opt. Soc. Am. B27, 1792–1798 (2010). [CrossRef]
  48. H. Sun, Y. P. Niu, R. X. Li, S. Q. Jin, and S. Q. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett.32, 2475–2477 (2007). [CrossRef] [PubMed]
  49. D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B34, R9034–R9037 (1986). [CrossRef]
  50. J. B. Williams, M. S. Sherwin, K. D. Maranowski, and A. C. Gossard, “Dissipation of intersubband plasmons in wide quantum wells,” Phys. Rev. Lett.87, 037401 (2001). [CrossRef] [PubMed]
  51. S. Q. Jin, S. Q. Gong, R. X. Li, and Z. Z. Xu, “Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom,” Phys. Rev. A69, 023408 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited