OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8496–8502

Multimode dynamics in bidirectional laser cavities by folding space into time delay

J. Javaloyes and S. Balle  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8496-8502 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (819 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multimode dynamics in bidirectional laser cavities can be accurately described by folding space into time delay. This results in a set of delayed algebraic equations that preserve the dynamics of all cavity modes while drastically reducing number of degrees of freedom. This reduction allows for both linear stability analysis and bifurcation diagram reconstruction, as well as integration times reduced by orders of magnitude.

© 2012 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 16, 2012
Revised Manuscript: March 20, 2012
Manuscript Accepted: March 20, 2012
Published: March 27, 2012

J. Javaloyes and S. Balle, "Multimode dynamics in bidirectional laser cavities by folding space into time delay," Opt. Express 20, 8496-8502 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Linke, B. Kasper, C. Burrus, I. Kaminow, J.-S. Ko, and T. Lee, “Mode power partition events in nearly single-frequency lasers,” J. Lightwave Technol.3, 706–712 (1985). [CrossRef]
  2. M. Ohtsu, Y. Teramachi, Y. Otsuka, and A. Osaki, “Analyses of mode-hopping phenomena in an AlGaAs laser,” IEEE J. Quantum. Elect.22, 535–543 (1986). [CrossRef]
  3. L. Furfaro, F. Pedaci, M. Giudici, X. Hachair, J. Tredicce, and S. Balle, “Mode-switching in semiconductor lasers,” IEEE J. Quantum. Elect.40, 1365–1376 (2004). [CrossRef]
  4. L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of he-ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett.5, 4–5 (1964). [CrossRef]
  5. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6, 1173–1185 (2000). [CrossRef]
  6. E. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and X. Wang, “Auto97: Continuation and bifurcation software for ordinary differential equations,” (2011).
  7. K. Engelborghs, T. Luzyanina, and G. Samaey, “Dde-biftool v. 2.00: a matlab package for bifurcation analysis of delay differential equations,” Tech. Rep., Department of Computer Science, K.U.Leuven, Belgium. (2001).
  8. J. A. Fleck, “Emission of pulse trains by Q-switched lasers,” Phys. Rev. Lett.21, 131–133 (1968). [CrossRef]
  9. J. Javaloyes and S. Balle, “Mode-locking in Fabry-Pérot lasers,” IEEE J. Quantum Electron.46, 1023–1030 (2010). [CrossRef]
  10. A. Pérez-Serrano, J. Javaloyes, and S. Balle, “Bichromatic emission and multimode dynamics in bidirectional ring lasers,” Phys. Rev. A81, 043817 (2010). [CrossRef]
  11. J. Javaloyes and S. Balle, “Quasiequilibrium time-domain susceptibility of semiconductor quantum wells,” Phys. Rev. A81, 062505 (2010). [CrossRef]
  12. P. Stolarz, J. Javaloyes, G. Mezosi, L. Hou, C. Ironside, M. Sorel, A. Bryce, and S. Balle, “Spectral dynamical behavior in passively mode-locked semiconductor lasers,” IEEE Photon. J.3, 1067–1082 (2011). [CrossRef]
  13. J. Javaloyes and S. Balle, “All-optical directional switching of bistable semiconductor ring lasers,” IEEE J. Quantum Electron47, 1078 –1085 (2011). [CrossRef]
  14. A.G. Vladimirov, A.S. Pimenov, and D. Rachinskii, “Numerical Study of Dynamical Regimes in a Monolithic Passively Mode-Locked Semiconductor Laser,” IEEE J. Quantum Electron45, 462 –468 (2009). [CrossRef]
  15. L. Narducci and N. B. Abraham, Laser Physics and Laser Instabilities (World Scientific, Singapore, 1988).
  16. J. Mulet and S. Balle, “Mode locking dynamics in electrically-driven vertical-external-cavity surface-emitting lasers,” IEEE J. Quantum Electron.41, 1148–1156 (2005). [CrossRef]
  17. L. A. Lugiato and F. Prati, “Difference differential equations for a resonator with a very thin nonlinear medium,” Phys. Rev. Lett.104, 233902 (2010). [CrossRef] [PubMed]
  18. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron.16, 347–355 (1980). [CrossRef]
  19. A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A72, 033808 (2005). [CrossRef]
  20. M. Rossetti, P. Bardella, and I. Montrosset, “Modeling passive mode-locking in quantum dot lasers: A comparison between a finite-difference traveling-wave model and a delayed differential equation approach,” IEEE J. Quantum. Electron47, 569 –576 (2011). [CrossRef]
  21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007.
  22. J. Javaloyes and S. Balle, “Freetwm: a simulation tool for semiconductor lasers.” (2012). Available at http://nova.uib.es/ONL/Softwares/Softwares.html .
  23. A. Pérez-Serrano, J. Javaloyes, and S. Balle, “Longitudinal mode multistability in ring and Fabry-Pérot lasers: the effect of spatial hole burning,” Opt. Express19, 3284–3289 (2011). [CrossRef] [PubMed]
  24. S. Balle, “Simple analytical approximations for the gain and refractive index spectra in quantum well lasers,” Phys. Rev. A57, 1304–1312 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited