OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8524–8534

Kerr-induced all-optical switching in a GaInP photonic crystal Fabry-Perot resonator

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, G. Lehoucq, and A. De Rossi  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8524-8534 (2012)
http://dx.doi.org/10.1364/OE.20.008524


View Full Text Article

Enhanced HTML    Acrobat PDF (1030 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe nonlinear properties of a GaInP photonic crystal Fabry-Perot resonator containing integrated reflectors. The device exhibits an extremely large static nonlinearity due to a thermal effect. Dynamical measurements were used to discriminate between the thermal and Kerr contributions to the nonlinearity. The high frequency nonlinear response is strictly due to the Kerr effect and the efficiency is similar to that obtained in self-phase modulation and four wave mixing experiments. The waveguide dispersion and the wavelength dependent integrated reflectors yield a series of transmission peaks with varying widths which determine the maximum speed at which the device can operate. Switching and wavelength conversion experiments with 92ps and 30ps wide pulses were demonstrated using pulse energies of a few pJ. The switching process is Kerr dominated with the fundamental response being essentially instantaneous so that the obtainable switching speed is strictly determined by the resonator structure.

© 2012 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(130.4815) Integrated optics : Optical switching devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: January 4, 2012
Revised Manuscript: February 23, 2012
Manuscript Accepted: February 23, 2012
Published: March 28, 2012

Citation
V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, G. Lehoucq, and A. De Rossi, "Kerr-induced all-optical switching in a GaInP photonic crystal Fabry-Perot resonator," Opt. Express 20, 8524-8534 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8524


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94, 021111 (2009). [CrossRef]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87, 151112 (2005). [CrossRef]
  3. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13, 2678–2687 (2005). [CrossRef] [PubMed]
  4. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocaviy,” Nat. Photonics4, 477–483 (2010). [CrossRef]
  5. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. In-oue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic network,” Opt. Express12, 6606–6614 (2004). [CrossRef] [PubMed]
  6. S. Combrié, A. De Rossi, Q. Vy Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett.33, 1908–1910 (2008). [CrossRef] [PubMed]
  7. I. Cestier, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, and A. De Rossi, “Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides,” Opt. Express18, 5746–5753 (2010). [CrossRef] [PubMed]
  8. M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, “Fabry-Pérot cavities based on two-dimensional photonic crystals fabricated in InP membranes,” J. Appl. Phys.95, 5928–5930 (2004). [CrossRef]
  9. M. Qiu, T. Sundström, and U. Andersson, “Radiation losses of air-hole mirrors in a photonic crystal waveguide realized in membrane structures,” 30th European Conference and Exhibition on Optical Communication (ECOC), paper Symposium We2.1.4 (2004).
  10. Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95, 061105 (2009). [CrossRef]
  11. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express13, 245–255 (2004). [CrossRef]
  12. Lumerical Solutions, Inc. http://www.lumerical.com/ .
  13. S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B23, 1521 (2005). [CrossRef]
  14. M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18, 21024–21029 (2010). [CrossRef] [PubMed]
  15. S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108 (2009). [CrossRef]
  16. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett.35, 1440–1442 (2010). [CrossRef] [PubMed]
  17. T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A19, 1169–1176 (1979). [CrossRef]
  18. K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron14, 938–945 (2008). [CrossRef]
  19. G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett.62, 1323–1325 (1993). [CrossRef]
  20. A. D. Bristow, R. Lyer, J. S. Aitchison, H. M. van Driel, and A. L. Smirl, “Switchable AlxGa1−xAs all-optical delay line at 1.55μm,” Appl. Phys. Lett.90, 101112 (2007). [CrossRef]
  21. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett.14, 74–76 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited