OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8543–8550

Artificial Kerr-type medium using metamaterials

Xiaogang Yin, Tianhua Feng, Zixian Liang, and Jensen Li  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8543-8550 (2012)
http://dx.doi.org/10.1364/OE.20.008543


View Full Text Article

Enhanced HTML    Acrobat PDF (1929 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated an artificial Kerr-medium realized by actuated THz metamaterials. Instead of directly applying E-field inside the medium, we use micromechanical systems actuated by voltage to tune the phase shift. We established that the combined system can have a relationship between the phase shift and the voltage similar to a Kerr cell. A metamaterial Kerr-cell is designed to modulate the transmission phase difference by 0.99°/V2 which is much stronger than natural Kerr crystals. It is attributed to the mechanical tunability of metamaterials with high indices in two orthogonal directions. A Lorentzian model is used in explaining the artificial Kerr cell.

© 2012 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: January 10, 2012
Revised Manuscript: February 10, 2012
Manuscript Accepted: February 10, 2012
Published: March 28, 2012

Citation
Xiaogang Yin, Tianhua Feng, Zixian Liang, and Jensen Li, "Artificial Kerr-type medium using metamaterials," Opt. Express 20, 8543-8550 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8543


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  2. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312(5775), 892–894 (2006). [CrossRef] [PubMed]
  3. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9(5), 407–412 (2010). [CrossRef] [PubMed]
  4. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005). [CrossRef] [PubMed]
  5. J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett.102(9), 093903 (2009). [CrossRef] [PubMed]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  7. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  8. K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express19(13), 12619–12627 (2011). [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  10. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007). [CrossRef]
  11. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009). [CrossRef] [PubMed]
  12. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009). [CrossRef]
  13. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010). [CrossRef] [PubMed]
  14. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun.2, 176 (2011). [CrossRef] [PubMed]
  15. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett.96(10), 107401 (2006). [CrossRef] [PubMed]
  16. H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008). [CrossRef]
  17. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008). [CrossRef]
  18. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009). [CrossRef] [PubMed]
  19. W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. (Deerfield Beach Fla.)23(15), 1792–1796 (2011). [CrossRef] [PubMed]
  20. Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators,” Adv. Funct. Mater.21(18), 3589–3594 (2011). [CrossRef]
  21. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express17(1), 136–149 (2009). [CrossRef] [PubMed]
  22. P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett.95(17), 171104 (2009). [CrossRef]
  23. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009). [CrossRef]
  24. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express16(9), 6736–6744 (2008). [CrossRef] [PubMed]
  25. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009). [CrossRef] [PubMed]
  26. S. Wang, F. Garet, K. Blary, E. Lheurette, J. L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett.97(18), 181902 (2010). [CrossRef]
  27. F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep.1, (2011), doi:. [CrossRef]
  28. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (R) (2008).
  29. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009). [CrossRef]
  30. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011). [CrossRef] [PubMed]
  31. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91(3), 037401 (2003). [CrossRef] [PubMed]
  32. I. V. Shadrivov, A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express16(25), 20266–20271 (2008). [CrossRef] [PubMed]
  33. D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear electric metamaterials,” Appl. Phys. Lett.95(8), 084102 (2009). [CrossRef]
  34. A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010). [CrossRef] [PubMed]
  35. S. O. Kasap, Optoelectronics and Photonics: Principles and Practices (Prentice Hall: Englewood Cliffs, NJ, 2000), Chap. 7.
  36. T. Kodera, D. L. Sounas, and C. Caloz, “Artificial Faraday rotation using a ring metamaterial structure without static magnetic field,” Appl. Phys. Lett.99(3), 031114 (2011). [CrossRef]
  37. L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano5(6), 5100–5106 (2011). [CrossRef] [PubMed]
  38. A. Q. Liu, Photonic MEMS Devices: Design, Fabrication and Control (CRC Press, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited