OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8551–8567

Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements

Christopher A. Werley, Kebin Fan, Andrew C. Strikwerda, Stephanie M. Teo, Xin Zhang, Richard D. Averitt, and Keith A. Nelson  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8551-8567 (2012)
http://dx.doi.org/10.1364/OE.20.008551


View Full Text Article

Enhanced HTML    Acrobat PDF (2289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the interaction between terahertz waves and resonant antennas with sub-cycle temporal and λ/100 spatial resolution. Depositing antennas on a LiNbO3 waveguide enables non-invasive electro-optic imaging, quantitative field characterization, and direct measurement of field enhancement (up to 40-fold). The spectral response is determined over a bandwidth spanning from DC across multiple resonances, and distinct behavior is observed in the near- and far-field. The scaling of enhancement and resonant frequency with gap size and antenna length agrees well with simulations.

© 2012 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(250.5403) Optoelectronics : Plasmonics
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 13, 2012
Revised Manuscript: March 21, 2012
Manuscript Accepted: March 21, 2012
Published: March 28, 2012

Citation
Christopher A. Werley, Kebin Fan, Andrew C. Strikwerda, Stephanie M. Teo, Xin Zhang, Richard D. Averitt, and Keith A. Nelson, "Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements," Opt. Express 20, 8551-8567 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8551


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).
  2. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  3. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006). [CrossRef] [PubMed]
  4. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  5. E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008). [CrossRef]
  6. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  7. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008). [CrossRef] [PubMed]
  8. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol.5(10), 732–736 (2010). [CrossRef] [PubMed]
  9. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003). [CrossRef]
  10. E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol.6(9), 588–593 (2011). [CrossRef] [PubMed]
  11. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett.10(9), 3524–3528 (2010). [CrossRef] [PubMed]
  12. C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett.8(2), 642–646 (2008). [CrossRef] [PubMed]
  13. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  14. A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt.49(19), E1–E6 (2010). [CrossRef] [PubMed]
  15. F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express19(9), 8277–8284 (2011). [CrossRef] [PubMed]
  16. K. Imura and H. Okamoto, “Reciprocity in scanning near-field optical microscopy: illumination and collection modes of transmission measurements,” Opt. Lett.31(10), 1474–1476 (2006). [CrossRef] [PubMed]
  17. S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron.13(2), 253–261 (2007). [CrossRef]
  18. K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.85(14), 2715–2717 (2004). [CrossRef]
  19. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res.37(1), 317–350 (2007). [CrossRef]
  20. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science299(5605), 374–377 (2003). [CrossRef] [PubMed]
  21. K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett.95(10), 103304 (2009). [CrossRef]
  22. N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater.1(2), 95–98 (2002). [CrossRef] [PubMed]
  23. P. Peier, S. Pilz, and T. Feurer, “Time-resolved coherent imaging of a THz multilayer response,” J. Opt. Soc. Am. B26(8), 1649–1655 (2009). [CrossRef]
  24. R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A103(49), 10260–10267 (1999). [CrossRef]
  25. P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B25(7), B70–B75 (2008). [CrossRef]
  26. Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express17(11), 9219–9225 (2009). [CrossRef] [PubMed]
  27. C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, “Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3,” J. Opt. Soc. Am. B27(11), 2350–2359 (2010). [CrossRef]
  28. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am.9(12), 2179–2189 (1992). [CrossRef]
  29. J. H. Kang, D. S. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett.102(9), 093906 (2009). [CrossRef] [PubMed]
  30. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B24(2), 649–657 (1981). [CrossRef]
  31. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express16(25), 20484–20489 (2008). [CrossRef] [PubMed]
  32. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009). [CrossRef]
  33. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett.30(20), 2805–2807 (2005). [CrossRef] [PubMed]
  34. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett.90(17), 171121 (2007). [CrossRef]
  35. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett.98(9), 091106 (2011). [CrossRef]
  36. C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum.82(12), 123108 (2011). [CrossRef] [PubMed]
  37. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford Univ. Press, 2007).
  38. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter34(6), 4129–4138 (1986). [CrossRef] [PubMed]
  39. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (978 KB)      QuickTime
» Media 2: MOV (2442 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited