OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8584–8591

Fast Brillouin optical time domain analysis for dynamic sensing

Yair Peled, Avi Motil, and Moshe Tur  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8584-8591 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1884 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new technique for the fast implementation of Brillouin Optical Time Domain Analysis (BOTDA) is proposed and demonstrated, carrying the classical BOTDA method to the dynamic sensing domain. By using a digital signal generator which enables fast switching among 100 scanning frequencies, we demonstrate a truly distributed and dynamic measurement of a 100m long fiber with a sampling rate of ~10kHz, limited only by the fiber length and the frequency granularity. With 10 averages the standard deviation of the measured strain was ~5 µε.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(190.0190) Nonlinear optics : Nonlinear optics
(290.5830) Scattering : Scattering, Brillouin
(330.1880) Vision, color, and visual optics : Detection

ToC Category:

Original Manuscript: February 2, 2012
Revised Manuscript: March 2, 2012
Manuscript Accepted: March 2, 2012
Published: March 28, 2012

Yair Peled, Avi Motil, and Moshe Tur, "Fast Brillouin optical time domain analysis for dynamic sensing," Opt. Express 20, 8584-8591 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett.36(11), 2062–2064 (2011). [CrossRef] [PubMed]
  2. A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-Based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol.29(11), 1729–1735 (2011). [CrossRef]
  3. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express19(21), 19845–19854 (2011). [CrossRef] [PubMed]
  4. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE7753, 775323, 775323-4 (2011). [CrossRef]
  5. Y. Peled, A. Motil, and M. Tur, “Fast microwave-photonics frequency sweeping for Brillouin ranging of strain or temperature,” in Proceedings of IEEE Conference on Microwaves, Communications, Antennas and Electronics Systems, (IEEE, 2011).
  6. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997). [CrossRef]
  7. K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett.18(24), 2653–2655 (2006). [CrossRef]
  8. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol.25(1), 381–386 (2007). [CrossRef]
  9. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008). [CrossRef] [PubMed]
  10. S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” J. Lightwave Technol.28(20), 2993–3003 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (330 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited