OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8608–8617

Broadband optical cloak and illusion created by the low order active sources

Junjie Du, Shiyang Liu, and Zhifang Lin  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8608-8617 (2012)
http://dx.doi.org/10.1364/OE.20.008608


View Full Text Article

Enhanced HTML    Acrobat PDF (13204 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In present work, we demonstrate an optical cloak and illusion by appropriate design of a cluster of active sources. As pointed out by Vasquez and coworkers, the merit of such proposal with active controls is to overcome the drawback of narrow operating frequency and intrinsic loss inherent in the cloaking device made of metamaterials. Accordingly, the illusion device designed thuswise has a broadband operating frequency. By use of the rigorous multiple scattering theory, we have performed the simulations. It is shown that the active illusion device can be used as an beam rotator. In particular, we have shown that the active sources can even be reduced to dipole ones, which is expected to enable much easier experimental implementation of the cloaking and illusion effect.

© 2012 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(230.3205) Optical devices : Invisibility cloaks
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Physical Optics

History
Original Manuscript: February 8, 2012
Revised Manuscript: March 14, 2012
Manuscript Accepted: March 17, 2012
Published: March 28, 2012

Citation
Junjie Du, Shiyang Liu, and Zhifang Lin, "Broadband optical cloak and illusion created by the low order active sources," Opt. Express 20, 8608-8617 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8608


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008). [CrossRef] [PubMed]
  4. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006). [CrossRef] [PubMed]
  5. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007). [CrossRef]
  6. S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett.101, 157407 (2008). [CrossRef] [PubMed]
  7. U. Leonhardt, “Optical conformal mapping,” Science312, 1777–1780 (2006). [CrossRef] [PubMed]
  8. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006). [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  10. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett.101, 203901 (2008). [CrossRef] [PubMed]
  11. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010). [CrossRef] [PubMed]
  12. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007). [CrossRef]
  13. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003). [CrossRef] [PubMed]
  14. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005). [CrossRef] [PubMed]
  15. J. J. Du, S. Y. Liu, Z. F. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A83, 035803 (2011). [CrossRef]
  16. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14, 9794–9804 (2006). [CrossRef] [PubMed]
  17. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100, 063903 (2008). [CrossRef] [PubMed]
  18. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33, 43–45 (2008). [CrossRef]
  19. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E72, 016623 (2005). [CrossRef]
  20. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008). [CrossRef] [PubMed]
  21. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett.102, 093901 (2009). [CrossRef] [PubMed]
  22. D. A. B. Miller, “On perfect cloaking,” Opt. Express14, 12457–12466 (2006). [CrossRef] [PubMed]
  23. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express15, 6314–6323 (2007). [CrossRef] [PubMed]
  24. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express17, 14800–14805 (2009). [CrossRef] [PubMed]
  25. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett.103, 073901 (2009). [CrossRef] [PubMed]
  26. H. H. Zheng, J. J. Xiao, Y. Lai, and C. T. Chan, “Exterior optical cloaking and illusions by using active sources: A boundary element perspective,” Phys. Rev. B81, 195116 (2010). [CrossRef]
  27. Y. Lai, Jack Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett.102, 253902 (2009). [CrossRef] [PubMed]
  28. X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple scattering theory for electromagnetic waves,” Phys. Rev. B47, 4161–4167 (1993). [CrossRef]
  29. S. Y. Liu and Z. F. Lin, “Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres,” Phys. Rev. E73, 066609 (2006). [CrossRef]
  30. S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B84, 045425 (2011). [CrossRef]
  31. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995).
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).
  33. J. J. Du, Z. F. Lin, S. T. Chui, W. L. Lu, H. Li, A. M. Wu, Z. Sheng, J. Zi, X. Wang, S. C. Zou, and F. W. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett.106, 203903 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited