OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8629–8640

Linear and nonlinear optical properties of Ag/Au bilayer thin films

James Hsu, Canek Fuentes-Hernandez, Alfred R. Ernst, Joel M. Hales, Joseph W. Perry, and Bernard Kippelen  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8629-8640 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The linear and nonlinear optical properties of Ag/Au bilayer metallic thin films with a total thickness of around 20 nm and with different Ag/Au mass-thickness ratios were studied. This study shows that the spectral dispersion of the effective refractive index of bilayer films can be tuned by controlling the mass-thickness ratio between Au and Ag. Improvement of the figure-of-merit for potential plasmonic applications and linear optical filters in the visible spectral range are reported and discussed. The nonlinear optical properties of bilayer metal films studied using femtosecond white-light continuum pump-probe experiments are also shown to be tunable with this ratio. The nonlinear change of optical path length is extracted from the pump-probe data and agrees with simulated values derived from a combination of the two-temperature model, describing the ultrafast electron heating dynamics, and a physical model that describes the dielectric permittivity of Au as a function of electron and lattice temperature.

© 2012 OSA

OCIS Codes
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: February 22, 2012
Revised Manuscript: March 16, 2012
Manuscript Accepted: March 19, 2012
Published: March 28, 2012

James Hsu, Canek Fuentes-Hernandez, Alfred R. Ernst, Joel M. Hales, Joseph W. Perry, and Bernard Kippelen, "Linear and nonlinear optical properties of Ag/Au bilayer thin films," Opt. Express 20, 8629-8640 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006). [CrossRef] [PubMed]
  3. D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “Nonlinear optical properties of induced transmission filters,” Opt. Express18(18), 19101–19113 (2010). [CrossRef] [PubMed]
  4. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett.72(14), 1676–1678 (1998). [CrossRef]
  5. S. Y. Ryu, C. H. Lee, I. S. Oh, S. Y. Song, K. H. Hwang, H. S. Hwang, M. H. Han, B. H. Hwang, H. K. Baik, Y. S. Kim, and J. Y. Lee, “Efficient inverted top-emitting organic light emitting diodes with transparent and surface-modified multilayer anodes,” Electrochem. Solid-State Lett.13(5), J43–J46 (2010). [CrossRef]
  6. N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B75(15), 155426 (2007). [CrossRef]
  7. D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys.107(12), 123114 (2010). [CrossRef]
  8. M. A. Swillam, N. Rotenberg, and H. M. van Driel, “All-optical ultrafast control of beaming through a single sub-wavelength aperture in a metal film,” Opt. Express19(8), 7856–7864 (2011). [CrossRef] [PubMed]
  9. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011). [CrossRef] [PubMed]
  10. N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces,” Phys. Rev. Lett.105(1), 017402 (2010). [CrossRef] [PubMed]
  11. J. Y. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, and S. R. J. Brueck, “Saturation of the second harmonic generation from GaAs-filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B83(16), 165438 (2011). [CrossRef]
  12. S. I. Anisimov, B. L. Kapeliovich, and T. L Perel'Man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974).
  13. C. Voisin, N. Del Fatti, D. Christofilos, and F. Vallee, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” J. Phys. Chem. B105(12), 2264–2280 (2001). [CrossRef]
  14. P. E. Hopkins, “Influence of Inter- and Intraband Transitions to Electron Temperature Decay in Noble Metals After Short-Pulsed Laser Heating,” J. Heat Transfer132(12), 122402 (2010). [CrossRef]
  15. B. H. Ong, X. C. Yuan, and S. C. Tjin, “Bimetallic silver-gold film waveguide surface plasmon resonance sensor,” Fiber Integr. Opt.26(4), 229–240 (2007). [CrossRef]
  16. H. Tóháti, A. Sipos, G. Szekeres, A. Mathesz, A. Szalai, P. Jojart, J. Budai, C. Vass, A. Kohazi-Kis, M. Csete, and Z. Bor, “Surface plasmon scattering on polymer-bimetal layer covered fused silica gratings generated by laser induced backside wet etching,” Appl. Surf. Sci.255(10), 5130–5137 (2009). [CrossRef]
  17. M. Thomschke, S. Hofmann, S. Olthof, M. Anderson, H. Kleemann, M. Schober, B. Lussem, and K. Leo, “Improvement of voltage and charge balance in inverted top-emitting organic electroluminescent diodes comprising doped transport layers by thermal annealing,” Appl. Phys. Lett.98(8), 083304 (2011). [CrossRef]
  18. T. Q. Qiu, T. Juhasz, C. Suarez, W. E. Bron, and C. L. Tien, “Femtosecond laser heating of multi-layer metals—II. Experiments,” Int. J. Heat Mass Transfer37(17), 2799–2808 (1994). [CrossRef]
  19. T. Q. Qiu and C. L. Tien, “Femtosecond laser heating of multi-layer metals—I. Analysis,” Int. J. Heat Mass Transfer37(17), 2789–2797 (1994). [CrossRef]
  20. W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 ev,” Phys. Rev. Lett.18(12), 445–448 (1967). [CrossRef]
  21. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter22(14), 143201 (2010). [CrossRef] [PubMed]
  22. H. A. Macleod, “The induced-transmission filter,” in Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, London, 2001).
  23. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B77(7), 075133 (2008). [CrossRef]
  24. J. Y. Bigot, J. Y. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett.75(25), 4702–4705 (1995). [CrossRef] [PubMed]
  25. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited