OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8658–8666

Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation

C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A.A. Bernussi  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8658-8666 (2012)
http://dx.doi.org/10.1364/OE.20.008658


View Full Text Article

Enhanced HTML    Acrobat PDF (8282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate theoretically and experimentally the direct observation of photonic Bloch wavefunctions in dielectric loaded plasmonic crystals. The ultimate ability to observe the Bloch wavefunctions in the surface emission images depends not on the light diffraction through the holes but on the strength of the in-plane light scattering from the individual lattice features and the presence of the metal layer which allows the light propagating within the crystal to be imaged in the far-field. Experimental results are in excellent agreement with simulated surface emission and back focal plane images of plasmonic crystals.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.5293) Materials : Photonic bandgap materials
(050.5298) Diffraction and gratings : Photonic crystals
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 10, 2012
Revised Manuscript: January 26, 2012
Manuscript Accepted: January 26, 2012
Published: March 29, 2012

Citation
C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A.A. Bernussi, "Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation," Opt. Express 20, 8658-8666 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8658


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B10(2), 283–295 (1993). [CrossRef]
  2. J. D. Joannopoulous, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997). [CrossRef]
  3. M. Loncar, D. Nedeljkovic, T. P. Pearsall, J. Vuckovic, A. Scherer, S. Kuchinsky, and D. C. Allan, “Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides,” Appl. Phys. Lett.80(10), 1689–1691 (2002). [CrossRef]
  4. N. Le Thomas, R. Houdre, D. M. Beggs, and T. F. Krauss, “Fourier space imaging of light localization at a photonic band-edge located below the light cone,” Phys. Rev. B79(3), 033305 (2009). [CrossRef]
  5. A. Berrier, M. Swillo, N. Le Thomas, R. Houdre, and S. Anand, “Bloch mode excitation in two-dimensional photonic crystals imaged by Fourier optics,” Phys. Rev. B79(16), 165116 (2009). [CrossRef]
  6. N. Le Thomas, R. Houdre, M. V. Kotlyar, D. O’Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Am. B24(12), 2964–2971 (2007). [CrossRef]
  7. D. Träger, R. Fischer, D. N. Neshev, A. A. Sukhorukov, C. Denz, W. Królikowski, and Y. S. Kivshar, “Nonlinear Bloch modes in two-dimensional photonic lattices,” Opt. Express14(5), 1913–1923 (2006). [CrossRef] [PubMed]
  8. S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009). [CrossRef]
  9. D. G. Zhang, X. C. Yuan, and J. Teng, “Surface plasmon-coupled emission on metallic film coated with dye-doped polymer nanogratings,” Appl. Phys. Lett.97(23), 231117 (2010). [CrossRef]
  10. A. Giannattasio and W. L. Barnes, “Direct observation of surface plasmon-polariton dispersion,” Opt. Express13(2), 428–434 (2005). [CrossRef] [PubMed]
  11. R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011). [CrossRef]
  12. C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011). [CrossRef]
  13. A. Krishnan, S. P. Frisbie, L. Grave de Peralta, and A. A. Bernussi, “Plasmon Stimulated Emission in Arrays of Bimetallic Structures Coated with Dye-Doped Dielectric,” Appl. Phys. Lett.96(11), 111104 (2010). [CrossRef]
  14. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express18(14), 14496–14510 (2010). [CrossRef] [PubMed]
  15. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Engineer. B149(3), 220–229 (2008). [CrossRef]
  16. I. Gryczinski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. Lacowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B108(32), 12073–12083 (2004). [CrossRef]
  17. L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(2), 023101 (2011). [CrossRef]
  18. A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011). [CrossRef]
  19. A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface Plasmon resonance microscopy,” Opt. Commun.174(1-4), 151–155 (2000). [CrossRef]
  20. G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc.214(3), 328–333 (2004). [CrossRef] [PubMed]
  21. C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley and Sons Inc. 2005).
  22. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett.77(9), 1889–1892 (1996). [CrossRef] [PubMed]
  23. A. Bouhelier, Th. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B63(15), 155404 (2001). [CrossRef]
  24. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton Universsity Press, 2008).
  25. RSoft Corporation, http://www.rsoftdesign.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited