OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8675–8680

Bandwidth broadening of near-infrared emission through nanocrystallization in Bi/Ni co-doped glass

Ke Zhang, Shifeng Zhou, Yixi Zhuang, Rong Yang, and Jianrong Qiu  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8675-8680 (2012)
http://dx.doi.org/10.1364/OE.20.008675


View Full Text Article

Enhanced HTML    Acrobat PDF (2811 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated an effective way to broaden the bandwidth of near-infrared (NIR) emission from Bi/Ni codoped 58SiO2-21ZnO-13Al2O3-5TiO2-3Ga2O3 glass through nanocrystallization. The nanocrystallized glass shows ultra-wide NIR luminescence with a full width at half maximum (FWHM) of 350 nm and long lifetime up to 476 µs. The observed broadband NIR emission, attributed to energy transfer suppression between Ni and Bi active centers, was realized by a separation process with Ni2+ ions selectively incorporated into nanocrystals. This bandwidth engineering through nanocrystallization inside glass suggests a promising approach for enhancement of glass functionality and construction of broadband light sources.

© 2012 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.6990) Materials : Transition-metal-doped materials

ToC Category:
Materials

History
Original Manuscript: February 1, 2012
Revised Manuscript: March 12, 2012
Manuscript Accepted: March 12, 2012
Published: March 29, 2012

Citation
Ke Zhang, Shifeng Zhou, Yixi Zhuang, Rong Yang, and Jianrong Qiu, "Bandwidth broadening of near-infrared emission through nanocrystallization in Bi/Ni co-doped glass," Opt. Express 20, 8675-8680 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002). [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  3. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth- doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001). [CrossRef]
  4. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Yb-Bi pulsed fiber lasers,” Opt. Lett.32(5), 451–453 (2007). [CrossRef] [PubMed]
  5. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bi-doped nanoporous silica glass: from blue-green, orange, red and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008). [CrossRef]
  6. H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011). [CrossRef] [PubMed]
  7. S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength tunable and ultra-broadband infrared luminescence in single ion doped transparent hybrid materials,” Adv. Funct. Mater.19(13), 2081–2088 (2009). [CrossRef]
  8. B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals,” Opt. Express16(4), 2508–2513 (2008). [CrossRef] [PubMed]
  9. S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc.132(50), 17945–17952 (2010). [CrossRef] [PubMed]
  10. B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, “Nickel-doped nanocrystalline glass-ceramic fiber,” Opt. Lett.27(15), 1309–1311 (2002). [CrossRef] [PubMed]
  11. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express13(5), 1635–1642 (2005). [CrossRef] [PubMed]
  12. R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescent solar energy collector,” Chem. Phys. Lett.80(1), 178–183 (1981). [CrossRef]
  13. T. Förster, “10th Spiers Memorial Lecture: transfer mechanisms of electronic excitation,” Discuss. Faraday Soc.27, 7–17 (1959). [CrossRef]
  14. J. R. DiMaio, C. Sabatier, B. Kokuoz, and J. Ballato, “Controlling energy transfer between multiple dopants within a single nanoparticle,” Proc. Natl. Acad. Sci. U.S.A.105(6), 1809–1813 (2008). [CrossRef] [PubMed]
  15. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited