OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8689–8699

Role of in-plane polarizability of the tip in scattering near-field microscopy of a plasmonic nanoparticle

Deok-Soo Kim and Zee Hwan Kim  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8689-8699 (2012)
http://dx.doi.org/10.1364/OE.20.008689


View Full Text Article

Enhanced HTML    Acrobat PDF (2306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report that a pyramid-shaped scanning probe microscopy tip has non-zero polarizability along the in-plane direction (perpendicular to the tip axis, z) at visible frequency. The in-plane polarizability enables the scattering-type scanning near-field optical microscopy (s-SNOM) to measure the in-plane field component around a plasmon-resonant nanoparticle. Because of the non-zero in-plane polarizability, the cross-polarized s-SNOM images may contain contributions from the in-plane field component of an out-of-plane plasmon mode as well as the out-of-plane field component of an in-plane mode. By comparing a scattering model and experimental s-SNOM images, we estimate the polarization anisotropies of pyramid-shaped Si-tips and metal-coated Si-tips.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: February 8, 2012
Revised Manuscript: March 22, 2012
Manuscript Accepted: March 24, 2012
Published: March 29, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Deok-Soo Kim and Zee Hwan Kim, "Role of in-plane polarizability of the tip in scattering near-field microscopy of a plasmonic nanoparticle," Opt. Express 20, 8689-8699 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8689


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009). [CrossRef]
  2. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett.10(9), 3524–3528 (2010). [CrossRef] [PubMed]
  3. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011). [CrossRef]
  4. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-Field microscopy,” J. Phys. Chem. C114(16), 7341–7345 (2010). [CrossRef]
  5. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009). [CrossRef] [PubMed]
  6. R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett.105(16), 167403 (2010). [CrossRef] [PubMed]
  7. D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009). [CrossRef] [PubMed]
  8. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11(2), 471–475 (2011). [CrossRef] [PubMed]
  9. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett.8(10), 3155–3159 (2008). [CrossRef] [PubMed]
  10. B. Deutsch, R. Hillenbrand, and L. Novotny, “Visualizing the optical interaction tensor of a gold nanoparticle pair,” Nano Lett.10(2), 652–656 (2010). [CrossRef] [PubMed]
  11. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007). [CrossRef]
  12. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595 (2006). [CrossRef] [PubMed]
  13. Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Chem. Phys. Lett.474(1–3), 146–152 (2009). [CrossRef]
  14. P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun3, 684 (2012). [CrossRef] [PubMed]
  15. J. Nelayah, M. Kociak, O. Stephan, F. J. G. de Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Mapping surface plasmons on a single matallic nanoparticle,” Nat. Phys.3(5), 348–353 (2007). [CrossRef]
  16. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett.7(9), 2843–2846 (2007). [CrossRef] [PubMed]
  17. A. McLeod, A. Weber-Bargioni, Z. Zhang, S. Dhuey, B. Harteneck, J. B. Neaton, S. Cabrini, and P. J. Schuck, “Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy,” Phys. Rev. Lett.106(3), 037402 (2011). [CrossRef] [PubMed]
  18. B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett.11(8), 3482–3488 (2011). [CrossRef] [PubMed]
  19. Z. H. Kim and S. R. Leone, “Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy,” Opt. Express16(3), 1733–1741 (2008). [CrossRef] [PubMed]
  20. R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst (Lond.)135(6), 1175–1181 (2010). [CrossRef] [PubMed]
  21. J. Sun, P. S. Carney, and J. C. Schotland, “Strong tip effects in near-field scanning optical tomography,” J. Appl. Phys.102(10), 103103 (2007). [CrossRef]
  22. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67(5), 717–754 (2004). [CrossRef]
  23. P. S. Carney, Personal communication, 2012.
  24. R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B73(3), 239–243 (2001). [CrossRef]
  25. Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett.7(8), 2258–2262 (2007). [CrossRef] [PubMed]
  26. A. Garcia-Etxarri, I. Romero, F. J. G. deAbajo, R. Hillenbrand, and J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B79(12), 125439 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited