OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8700–8709

Vanadium dioxide based plasmonic modulators

Luke A. Sweatlock and Kenneth Diest  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8700-8709 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Actively tunable metal-insulator-metal waveguides that employ vanadium dioxide films as the active medium are analyzed numerically. Vanadium dioxide exhibits strong contrast between the optical properties of its insulating and metallic phases. In particular, the large optical absorption in the metallic phase makes it straightforward to implement broadband attenuation modulators and switches, but this strong loss can also complicate the design of other types of devices. We present a plasmonic waveguide that functions as an index modulator with Δn > 20% at λ0 = 1550nm (0.80 eV), by using a thin active layer to strike a balance between maximizing index contrast while mitigating attenuation. A second device is configured as a band-stop absorption modulator, taking advantage of symmetry to selectively suppress the TM1 and TM3 modes, with relatively minimal attenuation of the TM0 and TM2 modes.

© 2012 OSA

OCIS Codes
(230.4110) Optical devices : Modulators
(240.6680) Optics at surfaces : Surface plasmons
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Optics at Surfaces

Original Manuscript: January 5, 2012
Revised Manuscript: March 5, 2012
Manuscript Accepted: March 6, 2012
Published: March 30, 2012

Luke A. Sweatlock and Kenneth Diest, "Vanadium dioxide based plasmonic modulators," Opt. Express 20, 8700-8709 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. I. Bozhevolnyi, ed. Plasmonic nanoguides and circuits (Pan Stanford Publishing, 2008). [CrossRef]
  2. M. L. Brongersma and P. G. Kik, eds. Surface plasmon nanophotonics (Springer, 2007). [CrossRef]
  3. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev.4, 562–567 (2010). [CrossRef]
  4. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron.16, 295–306 (2010) [CrossRef]
  5. J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006). [CrossRef]
  6. K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett.9, 2579–2583 (2009). [CrossRef] [PubMed]
  7. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009). [CrossRef] [PubMed]
  8. M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, “Directional coupler and nonlinear Mach–Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express18, 21030–21037 (2010). [CrossRef] [PubMed]
  9. S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys.105, 043502 (2009). [CrossRef]
  10. J. Lappalainen, S. Heinilehto, S. Saukko, W. Lantto, and H. Jantunen, “Microstructure dependent switching properties of VO2 thin films,” Sens. Actuators, A142, 250–255 (2008). [CrossRef]
  11. G. Xu, C. M. Huang, P. Jin, M. Tazawa, and D. M. Chen, “Nano-Ag on vanadium dioxide. I. Localized spectrum tailoring,” J. Appl. Phys.104, 053101 (2008). [CrossRef]
  12. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express18, 11192–11201 (2010). [CrossRef] [PubMed]
  13. J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE7597, 759710 (2010). [CrossRef]
  14. V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett.79, 2127–2129 (2001). [CrossRef]
  15. D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35, 3988–3990 (2010). [CrossRef] [PubMed]
  16. M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10, 2064–2068 (2010). [CrossRef] [PubMed]
  17. M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett.99044103 (2011). [CrossRef]
  18. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17, 18330–18339 (2009). [CrossRef] [PubMed]
  19. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices.” Appl. Opt.37, 5271–5283 (1998). [CrossRef]
  20. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals,” in Handbook of optical constants of solids, E. D. Palik, ed. (Academic, 1985) pp. 275–367.
  21. E. N Economou, “Surface plasmons in thin films,” Phys. Rev., 182, 539–554 (1969). [CrossRef]
  22. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988), pp. 4–7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited