OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8784–8790

Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate

Caihong Zhang, Yuri Avetisyan, Andreas Glosser, Iwao Kawayama, Hironaru Murakami, and Masayoshi Tonouchi  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8784-8790 (2012)
http://dx.doi.org/10.1364/OE.20.008784


View Full Text Article

Enhanced HTML    Acrobat PDF (974 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new scheme of optical rectification (OR) of femtosecond laser pulses in a periodically poled lithium niobate (PPLN) crystal, which generates high energy and bandwidth tunable multicycle THz pulses, is proposed and demonstrated. We show that the number of the oscillation cycles of the THz electric field and therefore bandwidth of generated THz spectrum can easily and smoothly be tuned from a few tens of GHz to a few THz by changing the pump optical spot size on PPLN crystal. The minimal bandwidth is 17 GHz that is smallest ever of reported in scheme of THz generation by OR at room temperature. Similar to the case of Cherenkov-type OR in single-domain LiNbO3, the spectrum of THz generation extends from 0.1 THz to 3 THz when laser beam is focused to a size close to half-period of PPLN structure. The energy spectral density of narrowband THz generation is almost independent of the bandwidth and is typically 220 nJ/THz for ~1 W pump power at 1 kHz repetition rate.

© 2012 OSA

OCIS Codes
(040.2235) Detectors : Far infrared or terahertz
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 3, 2012
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 5, 2012
Published: April 2, 2012

Citation
Caihong Zhang, Yuri Avetisyan, Andreas Glosser, Iwao Kawayama, Hironaru Murakami, and Masayoshi Tonouchi, "Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate," Opt. Express 20, 8784-8790 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8784


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett.5(8), 559–576 (2008). [CrossRef]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  3. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  4. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107(11), 111101 (2010). [CrossRef]
  5. S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc.256(1), 146–151 (2009). [CrossRef]
  6. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett.64(2), 137–139 (1994). [CrossRef]
  7. J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express19(20), 19114–19121 (2011). [CrossRef] [PubMed]
  8. J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys.104(3), 033111 (2008). [CrossRef]
  9. Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett.99(7), 071102 (2011). [CrossRef]
  10. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000). [CrossRef]
  11. J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – part 1: theory,” Appl. Phys. B86(2), 185–196 (2007). [CrossRef]
  12. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett.77(9), 1244–1246 (2000). [CrossRef]
  13. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001). [CrossRef] [PubMed]
  14. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 with 5 mm x 5 mm aperture,” Opt. Lett.30(21), 2918–2920 (2005). [CrossRef] [PubMed]
  15. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B14(12), 3319–3322 (1997). [CrossRef]
  16. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97(12), 123505 (2005). [CrossRef]
  17. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B25(7), B6–B19 (2008). [CrossRef]
  18. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express18(12), 12311–12327 (2010). [CrossRef] [PubMed]
  19. A. G. Stepanov, J. Hebling, and J. Kuhl, “Generation, tuning, and shaping of narrow-band, picosecond THz pulses by two-beam excitation,” Opt. Express12(19), 4650–4658 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited