OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8837–8847

Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments

Zuoye Liu, Pengji Ding, Yanchao Shi, Xing Lu, Shaohua Sun, Xiaoliang Liu, Qingchao Liu, Baowei Ding, and Bitao Hu  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8837-8847 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2084 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A plasma grating is formed by two femtosecond filaments, and the influence of probe filament on the plasma grating is shown. By using the plasma grating, the enhancement of the third harmonic (TH) generated from the probe filament is studied, and more than three orders of magnitude enhancement of TH generation is demonstrated as compared with that obtained from a single filament. The dependences of TH generation on the time delay, the spatial period of plasma grating, the relative polarization and the crossing position between the probe beam and the two pump beams are investigated. The spectral broadening of TH generated from the probe filament induced by the interaction between the probe filament and the plasma grating is also studied.

© 2012 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6380) Spectroscopy : Spectroscopy, modulation

ToC Category:
Nonlinear Optics

Original Manuscript: January 17, 2012
Revised Manuscript: March 13, 2012
Manuscript Accepted: March 15, 2012
Published: April 2, 2012

Zuoye Liu, Pengji Ding, Yanchao Shi, Xing Lu, Shaohua Sun, Xiaoliang Liu, Qingchao Liu, Baowei Ding, and Bitao Hu, "Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments," Opt. Express 20, 8837-8847 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Woste, “White-light filaments for atmospheric analysis,” Science301(5629), 61–64 (2003). [CrossRef] [PubMed]
  2. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2–4), 47–189 (2007). [CrossRef]
  3. Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express14(2), 773–778 (2006). [CrossRef] [PubMed]
  4. Z. Q. Hao, J. Zhang, T. T. Xi, X. H. Yuan, Z. Y. Zheng, X. Lu, M. Y. Yu, Y. T. Li, Z. H. Wang, W. Zhao, and Z. Y. Wei, “Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole,” Opt. Express15(24), 16102–16109 (2007). [CrossRef] [PubMed]
  5. J. Wu, H. Cai, H. P. Zeng, and A. Couairon, “Femtosecond filamentation and pulse compression in the wake of molecular alignment,” Opt. Lett.33(22), 2593–2595 (2008). [CrossRef] [PubMed]
  6. J. Wu, H. Cai, A. Couairon, and H. P. Zeng, “Few-cycle shock X-wave generation by filamentation in prealigned molecules,” Phys. Rev. A80(1), 013828 (2009). [CrossRef]
  7. H. Cai, J. Wu, Y. Peng, and H. P. Zeng, “Comparison study of supercontinuum generation by molecular alignment of N2 and O2.,” Opt. Express17(7), 5822–5828 (2009). [PubMed]
  8. H. Cai, J. Wu, X. S. Bai, H. F. Pan, and H. P. Zeng, “Molecular-alignment-assisted high-energy supercontinuum pulse generation in air,” Opt. Lett.35(1), 49–51 (2010). [CrossRef] [PubMed]
  9. Y. D. Wang, Y. S. Zhang, P. Chen, L. P. Shi, X. Lu, J. Wu, L. E. Ding, and H. P. Zeng, “The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses,” Appl. Phys. Lett.98(11), 111103 (2011). [CrossRef]
  10. S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, “A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification,” Opt. Express14(18), 8168–8177 (2006). [CrossRef] [PubMed]
  11. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B79(6), 673–677 (2004). [CrossRef]
  12. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett.30(19), 2657–2659 (2005). [CrossRef] [PubMed]
  13. A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt.53, 75–85 (2006). [CrossRef]
  14. A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, U. Keller, A. Couairon, M. Franco, and A. Mysyrowicz, “Spatio-temporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express15(9), 5394–5404 (2007). [CrossRef] [PubMed]
  15. A. Mysyrowicz, A. Couairon, and U. Keller, “Self-compression of optical laser pulses by filamentation,” New J. Phys.10(2), 025023 (2008). [CrossRef]
  16. J. S. Liu, H. Schroeder, S. L. Chin, R. X. Li, and Z. Z. Xu, “Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation,” Opt. Express13(25), 10248–10259 (2005). [CrossRef] [PubMed]
  17. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express12(19), 4614–4624 (2004). [CrossRef] [PubMed]
  18. N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett.89(14), 143901 (2002). [CrossRef] [PubMed]
  19. A. B. Fedotov, S. M. Gladkov, N. I. Koroteev, and A. M. Zheltikov, “Highly efficient frequency tripling of laser radiation in a low-temperature laser-produced gaseous plasma,” J. Opt. Soc. Am. B8(2), 363–366 (1991). [CrossRef]
  20. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A52(5), 4116–4125 (1995). [CrossRef] [PubMed]
  21. R. A. Ganeev, M. Suzuki, M. Baba, H. Kuroda, and I. A. Kulagin, “Third-harmonic generation in air by use of femtosecond radiation in tight-focusing conditions,” Appl. Opt.45(4), 748–755 (2006). [CrossRef] [PubMed]
  22. M. Matsubara, C. Becher, A. Schmehl, J. Mannhart, D. G. Schlom, and M. Fiebig, “Optical second- and third-harmonic generation on the ferromagnetic semiconductor europium oxide,” J. Appl. Phys.109(7), 07C309 (2011). [CrossRef]
  23. H. Yang, J. Zhang, J. Zhang, L. Z. Zhao, Y. J. Li, H. Teng, Y. T. Li, Z. H. Wang, Z. L. Chen, Z. Y. Wei, J. X. Ma, W. Yu, and Z. M. Sheng, “Third-order harmonic generation by self-guided femtosecond pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(1), 015401–015404 (2003). [CrossRef] [PubMed]
  24. T. T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett.96(2), 025003 (2006). [CrossRef] [PubMed]
  25. B. Shim, S. E. Schrauth, C. J. Hensley, L. T. Vuong, P. Hui, A. A. Ishaaya, and A. L. Gaeta, “Controlled interactions of femtosecond light filaments in air,” Phys. Rev. A81(6), 061803 (2010). [CrossRef]
  26. K. Hartinger and R. A. Bartels, “Enhancement of third harmonic generation by a laser-induced plasma,” Appl. Phys. Lett.93(15), 151102 (2008). [CrossRef]
  27. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Efficient third-harmonic generation through tailored IR femtosecond laser pulse filamentation in air,” Opt. Express17(5), 3190–3195 (2009). [CrossRef] [PubMed]
  28. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Filamentation-induced third-harmonic generation in air via plasma-enhanced third-order susceptibility,” Phys. Rev. A81(3), 033817 (2010). [CrossRef]
  29. X. Yang, J. Wu, Y. Peng, Y. Q. Tong, S. Yuan, L. E. Ding, Z. Z. Xu, and H. P. Zeng, “Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air,” Appl. Phys. Lett.95(11), 111103 (2009). [CrossRef]
  30. Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun.284(19), 4706–4713 (2011). [CrossRef]
  31. J. P. Yao, B. Zeng, W. Chu, J. L. Ni, and Y. Cheng, “Enhancement of third harmonic generation in femtosecond laser induced filamentation-comparison of results obtained with plasma and a pair of glass plates,” J. Mod. Opt.59(3), 245–249 (2012). [CrossRef]
  32. X. Yang, J. Wu, Y. Peng, Y. Q. Tong, P. F. Lu, L. E. Ding, Z. Z. Xu, and H. P. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett.34(24), 3806–3808 (2009). [CrossRef] [PubMed]
  33. M. Durand, Y. Liu, B. Forestier, A. Houard, and A. Mysyrowicz, “Experimental observation of a traveling plasma grating formed by two crossing filaments in gases,” Appl. Phys. Lett.98(12), 121110 (2011). [CrossRef]
  34. J. Liu, W. X. Li, H. F. Pan, and H. P. Zeng, “Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air,” Appl. Phys. Lett.99(15), 151105 (2011). [CrossRef]
  35. J. K. Wahlstrand and H. M. Milchberg, “Effect of a plasma grating on pump-probe experiments near the ionization threshold in gases,” Opt. Lett.36(19), 3822–3824 (2011). [CrossRef] [PubMed]
  36. P. Panagiotopoulos, N. K. Efremidis, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Tailoring the filamentation of intense femtosecond laser pulses with periodic lattices,” Phys. Rev. A82(6), 061803 (2010). [CrossRef]
  37. P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express18(20), 21504–21510 (2010). [CrossRef] [PubMed]
  38. L. P. Shi, W. X. Li, Y. D. Wang, X. Lu, L. E. Ding, and H. P. Zeng, “Generation of high-density electrons based on plasma grating induced Bragg diffraction in air,” Phys. Rev. Lett.107(9), 095004 (2011). [CrossRef] [PubMed]
  39. X. Yang, J. Wu, Y. Q. Tong, L. E. Ding, Z. Z. Xu, and H. P. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett.97(7), 071108 (2010). [CrossRef]
  40. Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett.105(5), 055003 (2010). [CrossRef] [PubMed]
  41. A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, “Two-beam coupling between filament-forming beams in air,” Phys. Rev. Lett.102(12), 123902 (2009). [CrossRef] [PubMed]
  42. O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys.19(8), 1776–1792 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited