OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8877–8890

Variable multilayer reflection together with long-pass filtering pigment determines the wing coloration of papilionid butterflies of the nireus group

Tomasz M. Trzeciak, Bodo D. Wilts, Doekele G. Stavenga, and Peter Vukusic  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8877-8890 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3884 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dorsal wing surfaces of papilionid butterflies of the nireus group are marked by bands of brilliant blue-green-colored cover scales. The thin, cuticular lower lamina of the scales acts as a blue reflector. The thick upper lamina forms a dense two-dimensional cuticular lattice of air cavities with a pigment acting as a long-pass optical filter. Reflectance spectra of small scale areas oscillate, but for large scale areas and the intact wing they are smooth. Theoretical modeling shows that the oscillations vanish for a scale ensemble with varying layer thicknesses and cavity dimensions. The scales combine in a subtle way structural and pigmentary coloration for an optical effect.

© 2012 OSA

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(230.4170) Optical devices : Multilayers
(160.1435) Materials : Biomaterials

ToC Category:

Original Manuscript: January 31, 2012
Revised Manuscript: March 23, 2012
Manuscript Accepted: March 23, 2012
Published: April 2, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Tomasz M. Trzeciak, Bodo D. Wilts, Doekele G. Stavenga, and Peter Vukusic, "Variable multilayer reflection together with long-pass filtering pigment determines the wing coloration of papilionid butterflies of the nireus group," Opt. Express 20, 8877-8890 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Smithsonian Institution Press, 1991).
  2. H. Ghiradella, “Hairs, bristles, and scales,” in Microscopic Anatomy of Invertebrates, M. Locke, ed. (Wiley-Liss, 1998), pp. 257–287.
  3. N. I. Morehouse, P. Vukusic, and R. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. Biol. Sci.274(1608), 359–366 (2007). [CrossRef] [PubMed]
  4. B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol.53(12), 1206–1217 (2007). [CrossRef] [PubMed]
  5. S. M. Luke, P. Vukusic, and B. Hallam, “Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales,” Opt. Express17(17), 14729–14743 (2009). [CrossRef] [PubMed]
  6. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev.99(7), 1935–1962 (1999). [CrossRef] [PubMed]
  7. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003). [CrossRef] [PubMed]
  8. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).
  9. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008). [CrossRef]
  10. L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photonics Rev.5(1), 27–51 (2011). [CrossRef]
  11. L. P. Biró, K. Kértesz, Z. Vértesy, G. I. Márk, Z. Bálint, V. Lousse, and J.-P. Vigneron, “Living photonic crystals: butterfly scales - nanostructure and optical properties,” Mater. Sci. Eng. C27(5-8), 941–946 (2007). [CrossRef]
  12. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999). [CrossRef]
  13. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002). [CrossRef] [PubMed]
  14. K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J.-P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021922 (2006). [CrossRef] [PubMed]
  15. B. D. Wilts, H. L. Leertouwer, and D. G. Stavenga, “Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers,” J. R. Soc. Interface6(Suppl 2), S185–S192 (2009). [PubMed]
  16. A. Argyros, S. Manos, M. C. Large, D. R. McKenzie, G. C. Cox, and D. M. Dwarte, “Electron tomography and computer visualisation of a three-dimensional ‘photonic’ crystal in a butterfly wing-scale,” Micron33(5), 483–487 (2002). [CrossRef] [PubMed]
  17. K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008). [CrossRef] [PubMed]
  18. K. Michielsen, H. De Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi,” J. R. Soc. Interface7(46), 765–771 (2010). [CrossRef] [PubMed]
  19. B. D. Wilts, K. Michielsen, H. De Raedt, and D. G. Stavenga, “Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales,” Interface Focus, published online before print December 21, 2011, doi: 10.1098/rsfs.2011.0082 (2011). [CrossRef]
  20. V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales,” Proc. Natl. Acad. Sci. U.S.A.107(26), 11676–11681 (2010). [CrossRef] [PubMed]
  21. C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem.31(12), 1856–1872 (1927). [CrossRef]
  22. H. Ghiradella, “Structure and development of iridescent Lepidopteran scales - the Papilionidae as a showcase family,” Ann. Entomol. Soc. Am.78, 252–264 (1985).
  23. J. Huxley, “Coloration of Papilio zalmoxis and P. antimachus, and discovery of Tyndall blue in butterflies,” Proc. R. Soc. Lond. B Biol. Sci.193(1113), 441–453 (1976). [CrossRef]
  24. R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol.209(4), 748–765 (2006). [CrossRef] [PubMed]
  25. P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science310(5751), 1151 (2005). [CrossRef] [PubMed]
  26. D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express17(1), 193–202 (2009). [CrossRef] [PubMed]
  27. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(2Suppl 2), S133–S148 (2009). [PubMed]
  28. D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London Ser. B366(1565), 709–723 (2011). [CrossRef] [PubMed]
  29. S. J. Orfanidis, “Electromagnetic Waves and Antennas,” www.ece.rutgers.edu/~orfanidi/ewa/ (2010).
  30. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011). [CrossRef] [PubMed]
  31. P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt.40(7), 1116–1125 (2001). [CrossRef] [PubMed]
  32. B. D. Wilts, T. M. Trzeciak, P. Vukusic, and D. G. Stavenga, “Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids,” J. Exp. Biol.215(5), 796–805 (2012). [CrossRef] [PubMed]
  33. D. J. Brink and M. E. Lee, “Confined blue iridescence by a diffracting microstructure: an optical investigation of the Cynandra opis butterfly,” Appl. Opt.38(25), 5282–5289 (1999). [CrossRef] [PubMed]
  34. E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn.77(12), 124801 (2008). [CrossRef]
  35. D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol.214(23), 3960–3967 (2011). [CrossRef] [PubMed]
  36. H. Ghiradella, “Structure of iridescent Lepidopteran scales - variations on several themes,” Ann. Entomol. Soc. Am.77, 637–645 (1984).
  37. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt.30(24), 3492–3500 (1991). [CrossRef] [PubMed]
  38. L. Poladian, S. Wickham, K. Lee, and M. C. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(2Suppl 2), S233–S242 (2009). [PubMed]
  39. M. Kolle, P. M. Salgard-Cunha, M. R. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010). [CrossRef] [PubMed]
  40. M. Barbier, “The status of blue-green bile-pigments of butterflies, and their phototransformations,” Experientia37(10), 1060–1062 (1981). [CrossRef]
  41. M. Choussy and M. Barbier, “Pigments biliaires des lépidoptères: identification de la phorcabiline I et de la sarpédobiline chez diverses espèces,” Biochem. Syst.1(4), 199–201 (1973). [CrossRef]
  42. D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol.213(10), 1731–1739 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited