OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8891–8897

Coupling of silicon-vacancy centers to a single crystal diamond cavity

Jonathan C. Lee, Igor Aharonovich, Andrew P. Magyar, Fabian Rol, and Evelyn L. Hu  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8891-8897 (2012)
http://dx.doi.org/10.1364/OE.20.008891


View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coupling of an ensemble of silicon-vacancy (SiV) centers to single-crystal diamond microdisk cavities is demonstrated. The cavities are fabricated from a single-crystal diamond membrane generated by ion implantation and electrochemical liftoff followed by homo-epitaxial overgrowth. Whispering gallery modes spectrally overlap with the zero-phonon line (ZPL) of the SiV centers and exhibit quality factors ∼ 2200. Lifetime reduction from 1.8 ns to 1.48 ns is observed from SiV centers in the cavity compared to those in the membrane outside the cavity. These results are pivotal in developing diamond integrated photonics networks.

© 2012 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.2220) Materials : Defect-center materials
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Materials

History
Original Manuscript: February 2, 2012
Revised Manuscript: March 16, 2012
Manuscript Accepted: March 19, 2012
Published: April 2, 2012

Citation
Jonathan C. Lee, Igor Aharonovich, Andrew P. Magyar, Fabian Rol, and Evelyn L. Hu, "Coupling of silicon-vacancy centers to a single crystal diamond cavity," Opt. Express 20, 8891-8897 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8891


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable Solid-State source of single photons,” Phys. Rev. Lett.85, 290–293 (2000). [CrossRef] [PubMed]
  2. P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R. Hemmer, J. Wrachtrup, and F. Jelezko, “Single-Shot readout of a single nuclear spin,” Science329, 542–544 (2010). [CrossRef] [PubMed]
  3. B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-Light coherence for Single-Spin measurement and control in diamond,” Science330, 1212–1215 (2010). [CrossRef] [PubMed]
  4. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature466, 730–734 (2010). [CrossRef] [PubMed]
  5. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys.13, 025012 (2011). [CrossRef]
  6. I. Aharononvich, S. Castelletto, B. Johnson, J. McCallum, D. Simpson, A. Greentree, and S. Prawer, “Chromium single-photon emitters in diamond fabricated by ion implantation,” Phys. Rev. B81, 121201 (2010). [CrossRef]
  7. J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett.86, 131926 (2005). [CrossRef]
  8. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  9. J. P. Goss, R. Jones, S. J. Breuer, P. R. Briddon, and S. Öberg, “The Twelve-Line 1.682 eV luminescence center in diamond and the Vacancy-Silicon complex,” Phys. Rev. Lett.77, 3041–3044 (1996). [CrossRef] [PubMed]
  10. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics5, 397–405 (2011). [CrossRef]
  11. C. Santori, P. E. Barclay, K. C. Fu, R. G. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010). [CrossRef] [PubMed]
  12. A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5, 301–305 (2011). [CrossRef]
  13. P. Barclay, K. Fu, C. Santori, A. Faraon, and R. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X1, 011007 (2011). [CrossRef]
  14. T. M. Babinec, HJ M, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nano.5, 195–199 (2010). [CrossRef]
  15. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010). [CrossRef]
  16. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010). [CrossRef] [PubMed]
  17. T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011). [CrossRef]
  18. B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin Single-Crystal diamond membranes,” Adv. Mater.20, 4793–4798 (2008). [CrossRef]
  19. I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys.13, 025018 (2011). [CrossRef]
  20. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett.91, 201112 (2007). [CrossRef]
  21. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett.90, 051108 (2007). [CrossRef]
  22. A. P. Magyar, J. C. Lee, A. M. Limarga, I. Aharonovich, F. Rol, D. R. Clarke, M. Huang, and E. L. Hu, “Fabrication of thin, luminescent, single-crystal diamond membranes,” Appl. Phys. Lett.99, 081913 (2011). [CrossRef]
  23. I. Aharonovich, J. C. Lee, A. P. Magyar, B. B. Buckley, C. G. Yale, D. D. Awschalom, and E. L. Hu, “Homoepitaxial growth of single crystal diamond membranes for quantum information processing,” Adv. Mater.24, OP54–OP59 (2012). [CrossRef] [PubMed]
  24. C. Lee, E. Gu, M. Dawson, I. Friel, and G. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Relat. Mater.17, 1292–1296 (2008). [CrossRef]
  25. H. Sternschulte, K. Thonke, R. Sauer, P. C. Münzinger, and P. Michler, “1.681-eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films,” Phys. Rev. B50, 14554–14560 (1994). [CrossRef]
  26. C. D. Clark, H. Kanda, I. Kiflawi, and G. Sittas, “Silicon defects in diamond,” Phys. Rev. B51, 16681–16688 (1995). [CrossRef]
  27. A. V. Turukhin, C. Liu, A. A. Gorokhovsky, R. R. Alfano, and W. Phillips, “Picosecond photoluminescence decay of si-doped chemical-vapor-deposited diamond films,” Phys. Rev. B54, 16448–16451 (1996). [CrossRef]
  28. A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. DenBaars, and E. L. Hu, “Observation of whispering gallery modes in nonpolar m-plane GaN microdisks,” Appl. Phys. Lett.94, 251116 (2009). [CrossRef]
  29. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nano.7, 69–74 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited