OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8907–8914

Negative radiation pressure and negative effective refractive index via dielectric birefringence

Jonathan Nemirovsky, Mikael C. Rechtsman, and Mordechai Segev  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8907-8914 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1432 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that light guided in a planar dielectric slab geometry incorporating a biaxial medium has lossless modes with group and phase velocities in opposite directions. Particles in a vacuum gap inserted into the structure experience negative radiation pressure: the particles are pulled by light rather than pushed by it. This effectively one-dimensional dielectric structure represents a new geometry for achieving negative radiation pressure in a wide range of frequencies with minimal loss. Moreover, this geometry provides a straightforward platform for experimentally resolving the Abrahams-Minkowski dilemma.

© 2012 OSA

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(260.1440) Physical optics : Birefringence
(310.0310) Thin films : Thin films

ToC Category:
Physical Optics

Original Manuscript: February 14, 2012
Revised Manuscript: March 19, 2012
Manuscript Accepted: March 19, 2012
Published: April 2, 2012

Jonathan Nemirovsky, Mikael C. Rechtsman, and Mordechai Segev, "Negative radiation pressure and negative effective refractive index via dielectric birefringence," Opt. Express 20, 8907-8914 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp.10(4), 509–514 (1968). [CrossRef]
  2. It should be noted that particles can be pulled backward even when radiation pressure is positive e.g., when the momentum of scattered waves is larger than the incoming momentum flux.
  3. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics5(9), 531–534 (2011). [CrossRef]
  4. S. Sukhov and A. Dogariu, “Negative nonconservative forces: optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett.107(20), 203602 (2011). [CrossRef] [PubMed]
  5. A. Novitsky, C. W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett.107(20), 203601 (2011). [CrossRef] [PubMed]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  8. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  9. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  10. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett.98(17), 177404 (2007). [CrossRef]
  11. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.)2(1), 1–17 (2008). [CrossRef]
  12. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B65(20), 201104 (2002). [CrossRef]
  13. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature423(6940), 604–605 (2003). [CrossRef] [PubMed]
  14. H. Lezec and K. J. Chau, “Negative radiation-pressure response of a left-handed plasmonic metamaterial,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWE1.
  15. S. Mokhov, R. El-Ganainy, and D. N. Christodoulides, “Power circulation via negative energy-flux wormholes in optical nanowaveguides,” Opt. Express14(8), 3255–3262 (2006). [CrossRef] [PubMed]
  16. A. Salandrino and D. N. Christodoulides, “Negative index Clarricoats-Waldron waveguides for terahertz and far infrared applications,” Opt. Express18(4), 3626–3631 (2010). [CrossRef] [PubMed]
  17. A. Salandrino and D. N. Christodoulides, “Reverse optical forces in negative index dielectric waveguide arrays,” Opt. Lett.36(16), 3103–3105 (2011). [CrossRef] [PubMed]
  18. M. Ben-Artzi and J. Nemirovsky, “Resolvent estimates for Schrodinger-type and Maxwell equations with applications,” in Spectral and Scattering Theory, A.G. Ramm ed. (Plenum Press, 1998), pp. 19–31.
  19. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B71(20), 201101 (2005). [CrossRef]
  20. H. Minkowski, “Die grundgleichungen für die elektromagnetischen vorgänge in bewegten körpern,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111 (1908).
  21. M. Abraham, “Zur elektrodynamik bewegter körper,” Rendiconti del Circolo Matematico di Palermo28(1), 1–28 (1909). [CrossRef]
  22. U. Leonhardt, “Optics: momentum in an uncertain light,” Nature444(7121), 823–824 (2006). [CrossRef] [PubMed]
  23. S. M. Barnett, “Resolution of the abraham-minkowski dilemma,” Phys. Rev. Lett.104(7), 070401 (2010). [CrossRef] [PubMed]
  24. S. M. Barnett and R. Loudon, “The enigma of optical momentum in a medium,” Philos. Transact. A Math. Phys. Eng. Sci.368(1914), 927–939 (2010). [CrossRef] [PubMed]
  25. W. She, J. Yu, and R. Feng, “Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light,” Phys. Rev. Lett.101(24), 243601 (2008). [CrossRef] [PubMed]
  26. G. K. Campbell, A. E. Leanhardt, J. Mun, M. Boyd, E. W. Streed, W. Ketterle, and D. E. Pritchard, “Photon recoil momentum in dispersive media,” Phys. Rev. Lett.94(17), 170403 (2005). [CrossRef] [PubMed]
  27. See Fig. 6.3–8 in B.E.A. Saleh and M.C. Teich, John Wiley & Sons, Inc. 215 (1991).
  28. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  29. J. Xu, J. Drelich, and E. M. Nadgorny, “Laser-based patterning of gold nanoparticles into microstructures,” Langmuir20(4), 1021–1025 (2004). [CrossRef] [PubMed]
  30. I. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt.37(13), 2653–2659 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited