OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8915–8919

11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium

S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8915-8919 (2012)
http://dx.doi.org/10.1364/OE.20.008915


View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a narrow linewidth continuous laser source with over 11 W output power at 780 nm, based on single-pass frequency doubling of an amplified 1560 nm fibre laser with 36% efficiency. This source offers a combination of high power, simplicity, mode quality and stability. Without any active stabilization, the linewidth is measured to be below 10 kHz. The fibre seed is tunable over 60 GHz, which allows access to the D2 transitions in 87Rb and 85Rb, providing a viable high-power source for laser cooling as well as for large-momentum-transfer beamsplitters in atom interferometry. Sources of this type will pave the way for a new generation of high flux, high duty-cycle degenerate quantum gas experiments.

© 2012 OSA

OCIS Codes
(020.1335) Atomic and molecular physics : Atom optics
(140.3515) Lasers and laser optics : Lasers, frequency doubled
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: February 13, 2012
Revised Manuscript: March 26, 2012
Manuscript Accepted: March 26, 2012
Published: April 2, 2012

Citation
S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, "11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium," Opt. Express 20, 8915-8919 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8915


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Jollenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt, and C. Klempt “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A83, 043406 (2011). [CrossRef]
  2. M. Olshanii and D. Weiss, “Producing Bose-Einstein condensates using optical lattices,” Phys. Rev. Lett.89, 090404 (2002). [CrossRef] [PubMed]
  3. H. Muller, S. Chiow, Q. Long, S. Herrmann, and S. Chu “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett.100, 180405 (2008). [CrossRef] [PubMed]
  4. S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran “Atomic gravitational wave interferometric sensor,” Phys. Rev. D78, 122002 (2008). [CrossRef]
  5. S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close “Why momentum width matters for atom interferometry with Bragg pulses,” New J. Phys.14, 023009 (2012). [CrossRef]
  6. K. B. MacAdam, A. Steinbach, and C. Wieman “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys.60, 1098 (1992). [CrossRef]
  7. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm.117, 541 (1995). [CrossRef]
  8. L. R. Taylor, Y. Feng, and D. B. Calia, “50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express18, 8540–8555 (2010). [CrossRef] [PubMed]
  9. Y. Feng, L. R. Taylor, and D. B. Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express17, 19021–19026 (2009). [CrossRef]
  10. S. Chiow, S. Herrmann, H. Muller, and S. Chu “6 W, 1 kHz linewidth, tunable continuous-wave near-infrared laser,” Opt. Express17, 5246 (2009). [CrossRef] [PubMed]
  11. S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, and H. Müller “Influence of the Coriolis force in atom interferometry,” accepted Phys. Rev. Lett. (2012).
  12. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electr. Lett.44, 582–583 (2008). [CrossRef]
  13. J. Walling, O. Peterson, and R. Morris, “Tunable CW alexandrite laser,” IEEE J. Quantum Electron.16, 120–121 (1980). [CrossRef]
  14. J. Zweiback and W. F. Krupke “28W average power hydrocarbon-free rubidium diode pumped alkali laser,” Opt. Express18, 1444–1449 (2010). [CrossRef] [PubMed]
  15. R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express11, 1709 (2003). [CrossRef] [PubMed]
  16. F. Lienhart, S. Boussen, O. Carat, N. Zahzam, Y. Bidel, and A. Bresson “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B89, 177 (2007). [CrossRef]
  17. V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett.36, 4128 (2011). [CrossRef] [PubMed]
  18. NP Photonics, The Rock.
  19. IPG photonics.
  20. PPLN crystal supplied by Covesion Ltd.
  21. J. Feng, Y. Li, X. Tian, J. Liu, and K. Zhang “Noise suppression, linewidth narrowing of a master oscillator power amplifier at 1.56nm and the second harmonic generation output at 780nm,” Opt. Express16, 11871 (2008). [CrossRef] [PubMed]
  22. F. Kéfélian, H. Jiang, P. Lemonde, and G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line,” Opt. Lett.34, 914–916 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited