OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8920–8928

Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides

Zhaolu Wang, Hongjun Liu, Nan Huang, Qibing Sun, and Jin Wen  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8920-8928 (2012)
http://dx.doi.org/10.1364/OE.20.008920


View Full Text Article

Enhanced HTML    Acrobat PDF (1501 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Terahertz (THz) wave generation via four-wave mixing (FWM) in silicon membrane waveguides is theoretically investigated with mid-infrared laser pulses. Compared with the conventional parametric amplification or wavelength conversion based on FWM in silicon waveguides, which needs a pump wavelength located in the anomalous group-velocity dispersion (GVD) regime to realize broad phase matching, the pump wavelength located in the normal GVD regime is required to realize collinear phase matching for the THz-wave generation via FWM. The pump wavelength and rib height of the silicon membrane waveguide can be tuned to obtain a broadband phase matching. Moreover, the conversion efficiency of the THz-wave generation is studied with different pump wavelengths and rib heights of the silicon membrane waveguides, and broadband THz-wave can be obtained with high efficiency exceeding 1%.

© 2012 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.7370) Optical devices : Waveguides
(310.2790) Thin films : Guided waves

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 16, 2012
Revised Manuscript: March 17, 2012
Manuscript Accepted: March 20, 2012
Published: April 2, 2012

Citation
Zhaolu Wang, Hongjun Liu, Nan Huang, Qibing Sun, and Jin Wen, "Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides," Opt. Express 20, 8920-8928 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8920


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO(3) ribbon waveguide for efficient difference-frequency generation of terahertz wave in the collinear configuration,” Opt. Express15(22), 14783–14792 (2007). [CrossRef] [PubMed]
  2. K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz-wave parametric generator with wide tenability,” Appl. Phys. Lett.80(2), 195–198 (2002). [CrossRef]
  3. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, “Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies,” Opt. Lett.30(24), 3392–3394 (2005). [CrossRef] [PubMed]
  4. X. Xie, J. Xu, and X.-C. Zhang, “Terahertz wave generation and detection from a cdte crystal characterized by different excitation wavelengths,” Opt. Lett.31(7), 978–980 (2006). [CrossRef] [PubMed]
  5. T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express16(9), 6471–6478 (2008). [CrossRef] [PubMed]
  6. K. L. Vodopyanov and Y. H. Avetisyan, “Optical terahertz wave generation in a planar GaAs waveguide,” Opt. Lett.33(20), 2314–2316 (2008). [CrossRef] [PubMed]
  7. Y. J. Ding, “Efficient generation of high-frequency terahertz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry,” Opt. Lett.35(2), 262–264 (2010). [CrossRef] [PubMed]
  8. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005). [CrossRef] [PubMed]
  9. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006). [CrossRef] [PubMed]
  10. T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express14(4), 1604–1610 (2006). [CrossRef] [PubMed]
  11. Y. H. Avetisyan, “Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique,” Opt. Lett.35(15), 2508–2510 (2010). [CrossRef] [PubMed]
  12. K. Suizu and K. Kawase, “Terahertz-wave generation in a conventional optical fiber,” Opt. Lett.32(20), 2990–2992 (2007). [CrossRef] [PubMed]
  13. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express13(12), 4629–4637 (2005). [CrossRef] [PubMed]
  14. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express13(11), 4341–4349 (2005). [CrossRef]
  15. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840 (2006). [CrossRef]
  16. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett.32(4), 391–393 (2007). [CrossRef] [PubMed]
  17. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006). [CrossRef] [PubMed]
  18. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express19(18), 17212–17219 (2011). [CrossRef] [PubMed]
  19. M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett.97(16), 161107 (2010). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  21. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  22. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express14(11), 4786–4799 (2006). [CrossRef] [PubMed]
  23. G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol.23(6), 064002 (2008). [CrossRef]
  24. T. E. Murphy, software available at http://www.photonics.umd.edu .
  25. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express16(14), 10596–10610 (2008). [CrossRef] [PubMed]
  26. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophtonic waveguides,” Nat. Photonics4(8), 557–560 (2010). [CrossRef]
  27. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1(1), 162–235 (2009). [CrossRef]
  28. Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime,” Opt. Express19(24), 24730–24737 (2011). [CrossRef] [PubMed]
  29. E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010). [CrossRef] [PubMed]
  30. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007). [CrossRef]
  31. N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys.110(1), 011301 (2011). [CrossRef]
  32. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011). [CrossRef] [PubMed]
  33. http://www.nature.com/nphoton/journal/v4/n8/full/nphoton.2010.173.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited