OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8939–8948

Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning

Li-Chung Cheng, Chia-Yuan Chang, Chun-Yu Lin, Keng-Chi Cho, Wei-Chung Yen, Nan-Shan Chang, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8939-8948 (2012)
http://dx.doi.org/10.1364/OE.20.008939


View Full Text Article

Enhanced HTML    Acrobat PDF (1399 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. Key features of this microscope are the integrations of a 10 kHz repetition rate ultrafast amplifier featuring high instantaneous peak power (maximum 400 μJ/pulse at a 90 fs pulse width) and a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled camera into a spatiotemporal focusing microscope. This configuration can produce multiphoton images with an excitation area larger than 200 × 100 μm2 at a frame rate greater than 100 Hz (current maximum of 200 Hz). Brownian motions of fluorescent microbeads as small as 0.5 μm were observed in real-time with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Furthermore, second harmonic images of chicken tendons demonstrate that the developed widefield multiphoton microscope can provide high resolution z-sectioning for bioimaging.

© 2012 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: February 21, 2012
Revised Manuscript: March 26, 2012
Manuscript Accepted: March 26, 2012
Published: April 2, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Li-Chung Cheng, Chia-Yuan Chang, Chun-Yu Lin, Keng-Chi Cho, Wei-Chung Yen, Nan-Shan Chang, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen, "Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning," Opt. Express 20, 8939-8948 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8939


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  2. I. Freund and M. Deutsch, “Second-harmonic microscopy of biological tissue,” Opt. Lett.11(2), 94–96 (1986). [CrossRef] [PubMed]
  3. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc.181(3), 253–259 (1996). [CrossRef] [PubMed]
  4. A. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multipoint excitation,” J. Microsc.192(2), 217–226 (1998). [CrossRef]
  5. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett.23(9), 655–657 (1998). [CrossRef] [PubMed]
  6. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005). [CrossRef] [PubMed]
  7. E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Opt. Lett.30(13), 1686–1688 (2005). [CrossRef] [PubMed]
  8. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun.281(7), 1796–1805 (2008). [CrossRef] [PubMed]
  9. A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A.105(51), 20221–20226 (2008). [CrossRef] [PubMed]
  10. A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express18(19), 19645–19655 (2010). [CrossRef] [PubMed]
  11. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010). [CrossRef] [PubMed]
  12. O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express2(3), 696–704 (2011). [CrossRef] [PubMed]
  13. K. H. Kim, C. Buehler, and P. T. C. So, “High-speed, two-photon scanning microscope,” Appl. Opt.38(28), 6004–6009 (1999). [CrossRef] [PubMed]
  14. A. Egner and S. W. Hell, “Time multiplexing and parallelization in multifocal multiphoton microscopy,” J. Opt. Soc. Am. A17(7), 1192–1201 (2000). [CrossRef] [PubMed]
  15. P. J. Keller and E. H. K. Stelzer, “Quantitative in vivo imaging of entire embryos with digital scanned laser light sheet fluorescence microscopy,” Curr. Opin. Neurobiol.18(6), 624–632 (2008). [CrossRef] [PubMed]
  16. J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J2(3), 143–155 (2008). [CrossRef] [PubMed]
  17. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  18. A. Van Orden, N. P. Machara, P. M. Goodwin, and R. A. Keller, “Single-molecule identification in flowing sample streams by fluorescence burst size and intraburst fluorescence decay rate,” Anal. Chem.70(7), 1444–1451 (1998). [CrossRef] [PubMed]
  19. H. Dana and S. Shoham, “Numerical evaluation of temporal focusing characteristics in transparent and scattering media,” Opt. Express19(6), 4937–4948 (2011). [CrossRef] [PubMed]
  20. R. M. Mazo, Brownian Motion: Fluctuations, Dynamics, and Applications (Oxford University Press, 2009).
  21. T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J.91(12), 4665–4677 (2006). [CrossRef] [PubMed]
  22. T.-M. Liu, M.-C. Chan, I.-H. Chen, S. H. Chia, and C.-K. Sun, “Miniaturized multiphoton microscope with a 24Hz frame-rate,” Opt. Express16(14), 10501–10506 (2008). [CrossRef] [PubMed]
  23. D. Oron and Y. Silberberg, “Harmonic generation with temporally focused ultrashort pulses,” J. Opt. Soc. Am. B22(12), 2660–2663 (2005). [CrossRef]
  24. D. Oron and Y. Silberberg, “Third-harmonic generation with cylindrical Gaussian beams,” J. Opt. Soc. Am. B21(11), 1964–1968 (2004). [CrossRef]
  25. E. Papagiakoumou, A. Be`gue, O. Schwartz, D. Oron, and V. Emiliani, “Shaped two-photon excitation deep inside scattering tissue,” submitted for publication.
  26. C.-Y. Chung, K.-C. Cho, C.-C. Chang, C. H. Lin, W. C. Yen, and S. J. Chen, “Adaptive-optics system with liquid-crystal phase-shift interferometer,” Appl. Opt.45(15), 3409–3414 (2006). [CrossRef] [PubMed]
  27. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997). [CrossRef] [PubMed]
  28. T. Wilson, M. A. A. Neil, and R. Juškaitis, “Real-time three-dimensional imaging of macroscopic structures,” J. Microsc.191(2), 116–118 (1998). [CrossRef] [PubMed]
  29. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  30. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  31. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  32. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett.33(16), 1819–1821 (2008). [CrossRef] [PubMed]
  33. D. Kim and P. T. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett.35(10), 1602–1604 (2010). [CrossRef] [PubMed]
  34. Y.-C. Li, L.-C. Cheng, C.-H. Lien, C.-Y. Chang, N.-S. Chang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned generation,” submitted for publication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (706 KB)     
» Media 2: MOV (622 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited