OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8959–8973

A dual-spectrometer approach to reflectance measurements under sub-optimal sky conditions

Charles M. Bachmann, Marcos J. Montes, Christopher E. Parrish, Robert A. Fusina, C. Reid Nichols, Rong-Rong Li, Eric Hallenborg, Christopher A. Jones, Krista Lee, Jon Sellars, Stephen A. White, and John C. Fry  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8959-8973 (2012)
http://dx.doi.org/10.1364/OE.20.008959


View Full Text Article

Enhanced HTML    Acrobat PDF (3296 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a practical method for the development of spectral reflectance libraries under sub-optimal sky conditions. Although there are commercially available spectrometers which simultaneously measure both downwelling and upwelling radiance to mitigate the impact of sub-optimal sky conditions, these spectrometers only record in the visible and near infra-red. There are presently no commercially available spectrometers with this capability that can record the visible through short-wave infra-red. This paper presents a practical method of recording and processing data using coordinated measurements from two full-range spectrometers and discusses potential pitfalls and solutions required to achieve accurate reflectance spectra. Results demonstrate that high-quality spectral reflectance libraries can be developed with this approach.

© 2012 OSA

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Spectroscopy

History
Original Manuscript: October 14, 2011
Revised Manuscript: February 21, 2012
Manuscript Accepted: February 28, 2012
Published: April 3, 2012

Citation
Charles M. Bachmann, Marcos J. Montes, Christopher E. Parrish, Robert A. Fusina, C. Reid Nichols, Rong-Rong Li, Eric Hallenborg, Christopher A. Jones, Krista Lee, Jon Sellars, Stephen A. White, and John C. Fry, "A dual-spectrometer approach to reflectance measurements under sub-optimal sky conditions," Opt. Express 20, 8959-8973 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8959


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. D. van der Meer and S. M. de Jong, Imaging Spectrometry Basic Principles and Prospective Applications (Kluwer Academic Publishers, 2001).
  2. R. J. Zomer, A. Trabucco, and S. L. Ustin, “Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing,” J. Environ. Manage.90(7), 2170–2177 (2009). [CrossRef] [PubMed]
  3. K. N. Youngentob, D. A. Roberts, A. A. Held, P. E. Dennison, X. Jia, and D. B. Lindenmayer, “Mapping two Eucalyptus subgenera using multiple endmember spectral mixture analysis and continuum-removed imaging spectrometry data,” Remote Sens. Environ.115(5), 1115–1128 (2011). [CrossRef]
  4. R. A. V. Rossel, S. R. Cattle, A. Ortega, and Y. Fouad, “In situ measurements of soil colour, mineral composition and clay content by vis-NIR spectroscopy,” Geoderma150(3-4), 253–266 (2009). [CrossRef]
  5. B. D. Bue, E. Merenyi, and B. Csatho, “Automated labeling of materials in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.48(11), 4059–4070 (2010).
  6. G. Serbin, C. S. T. Daughtry, E. R. Hunt, J. B. Reeves, and D. J. Brown, “Effects of soil composition and mineralogy on remote sensing of crop residue cover,” Remote Sens. Environ.113(1), 224–238 (2009). [CrossRef]
  7. M. Lewis, V. Jooste, and A. A. de Gasparis, “Discrimination of arid vegetation with airborne multispectral scanner hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.39(7), 1471–1479 (2001). [CrossRef]
  8. J. P. Guerschman, M. J. Hill, L. J. Renzullo, D. J. Barrett, A. S. Marks, and E. J. Botha, “Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors,” Remote Sens. Environ.113(5), 928–945 (2009). [CrossRef]
  9. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
  10. C. D. Mobley, L. K. Sundman, C. O. Davis, J. H. Bowles, T. V. Downes, R. A. Leathers, M. J. Montes, W. P. Bissett, D. D. Kohler, R. P. Reid, E. M. Louchard, and A. Gleason, “Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables,” Appl. Opt.44(17), 3576–3592 (2005). [CrossRef] [PubMed]
  11. C. M. Bachmann, M. J. Montes, R. A. Fusina, C. Parrish, J. Sellars, A. Weidemann, W. Goode, C. R. Nichols, P. Woodward, K. McIlhany, V. Hill, R. Zimmerman, D. Korwan, B. Truitt, and A. Schwarzschild, “Bathymetry retrieval from hyperspectral imagery in the very shallow water limit: a case study from the 2007 Virginia Coast Reserve (VCR ’07) multi-sensor campaign,” Mar. Geod.33(1), 53–75 (2010). [CrossRef]
  12. C. M. Bachmann, C. R. Nichols, M. Montes, R. Li, P. Woodward, R. A. Fusina, W. Chen, V. Mishra, W. Kim, J. Monty, K. McIlhany, K. Kessler, D. Korwan, D. Miller, E. Bennert, G. Smith, D. Gillis, J. Sellers, C. Parrish, A. Schwarzschild, and B. Truitt, “Retrieval of substrate bearing strength from hyperspectral imagery during the Virginia Coast Reserve (VCR ’07) multi-sensor campaign,” Mar. Geod.33(2–3), 101–116 (2010). [CrossRef]
  13. C. M. Bachmann, C. R. Nichols, M. J. Montes, R. A. Fusina, R.-R. Li, C. Gross, J. Fry, C. Parrish, J. Sellars, S. A. White, C. A. Jones, and K. Lee, “Coastal characterization from hyperspectral imagery: an intercomparison of retrieval properties from three coast types,” in Proc. IGARSS 2010, Honolulu, HI, pp. 138–141.
  14. M. J. Duggin, “The field measurement of reflectance factors,” Photgrammetry Eng. Rem. Sens.46, 643–647 (1980).
  15. http://lwa.gov.au/files/products/national-land-and-water-resources-audit/pn21570/pn21570.pdf
  16. http://speclab.cr.usgs.gov/spectral-lib.html
  17. E. J. Milton, M. E. Schaepman, K. Anderson, M. Kneubuhler, and N. Fox, “Progress in field spectroscopy,” Remote Sens. Environ.113, S92–S109 (2009). [CrossRef]
  18. K. Anderson, E. J. Milton, and E. M. Rollin, “Calibration of dual-beam spectroradiometric data,” Int. J. Remote Sens.27(5), 975–986 (2006). [CrossRef]
  19. E. Karpouzli, T. J. Malthus, and C. J. Place, “Hyperspectral discrimination of coral reef benthic communities in the western Carribean,” Coral Reefs23(1), 141–151 (2004). [CrossRef]
  20. J. Stuckens, B. Somers, W. W. Verstraeten, R. Swennen, and P. Coppin, “Evaluation and normalization of cloud obscuration related brdf effects in field spectroscopy,” Remote Sens.1(3), 496–518 (2009). [CrossRef]
  21. http://support.asdi.com/Document/Documents.aspx
  22. G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing-definitions and case studies,” Remote Sens. Environ.103(1), 27–42 (2006). [CrossRef]
  23. M. Meroni, L. Busetto, L. Guanter, S. Cogliati, G. F. Crosta, M. Migliavacca, C. Panigada, M. Rossini, and R. Colombo, “Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features,” Appl. Opt.49(15), 2858–2871 (2010). [CrossRef] [PubMed]
  24. K. T. Kriebel, “On the variability of the reflected radiation field due to differing distributions of the irradiation,” Remote Sens. Environ.4, 257–264 (1975). [CrossRef]
  25. K. T. Kriebel, “Average variability of the radiation reflected by vegetated surfaces due to differing irradiations,” Remote Sens. Environ.7(1), 81–83 (1978). [CrossRef]
  26. K. T. Kriebel, “Albedo of vegetated surfaces: its variability with differing irradiances,” Remote Sens. Environ.8(4), 283–290 (1979). [CrossRef]
  27. M. A. Gilabert and J. Melia, “Solar angle and sky light effects on ground reflectance measurements in a citrus canopy,” Remote Sens. Environ.45(3), 281–293 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited