OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8974–8981

Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface

Hyun Seok Lee, Chawki Awada, Salim Boutami, Fabrice Charra, Ludovic Douillard, and Roch Espiau de Lamaestre  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8974-8981 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1069 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the propagation properties of surface plasmon polaritons on a Cu surface by means of photoemission electron microscopy. Use of a CMOS process to fabricate the Cu thin film is shown to enable very high propagation distances (up to 65 μm at 750 nm wavelength), provided that the copper native oxide is removed. A critical review of the optical loss mechanisms is undertaken and shed light on the effect of single grain boundaries in increasing the propagation losses of the plasmon. A microscopic interpretation is provided, relying on groove induced electromagnetic hot spots.

© 2012 OSA

OCIS Codes
(030.5770) Coherence and statistical optics : Roughness
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.3900) Materials : Metals
(190.4180) Nonlinear optics : Multiphoton processes
(240.6680) Optics at surfaces : Surface plasmons
(240.6675) Optics at surfaces : Surface photoemission and photoelectron spectroscopy

ToC Category:
Optics at Surfaces

Original Manuscript: December 13, 2011
Revised Manuscript: January 23, 2012
Manuscript Accepted: February 2, 2012
Published: April 3, 2012

Hyun Seok Lee, Chawki Awada, Salim Boutami, Fabrice Charra, Ludovic Douillard, and Roch Espiau de Lamaestre, "Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface," Opt. Express 20, 8974-8981 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60, 9061–9068 (1999). [CrossRef]
  2. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett.10, 2922–2926 (2010). [CrossRef] [PubMed]
  3. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal-oxide-si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009). [CrossRef] [PubMed]
  4. J. L. Perchec, R. E. de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express19, 15720–15731 (2011). [CrossRef] [PubMed]
  5. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.” Appl. Phys. Lett.93, 113110 (2008). [CrossRef]
  6. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325, 594–597 (2009). [CrossRef] [PubMed]
  7. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10, 916–922 (2010). [CrossRef] [PubMed]
  8. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B12, 4036–4046 (1975). [CrossRef]
  9. D. Canchal-Arias and P. Dawson, “Measurement and interpretation of the mid-infrared properties of single crystal and polycrystalline gold,” Surface Science577, 95 – 111 (2005). [CrossRef]
  10. V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett.9, 178–182 (2009). [CrossRef]
  11. E. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
  12. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  13. V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.
  14. N. Ashcroft and N. Mermin, Solid State Physics (Orlando, 1976).
  15. L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett.8, 935–940 (2008). [CrossRef] [PubMed]
  16. L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. of Phys. D44, 464002 (2011). [CrossRef]
  17. R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst135, 1175–1181 (2010). [CrossRef] [PubMed]
  18. H. Liu, H. Liu, P. Lalanne, X. Yang, and J.-P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron.14, 1522–1529 (2008). [CrossRef]
  19. S. Boutami and J. Hazart, “Calculation of a point source radiation in a flat or non-flat stratified background: an alternative to sommerfeld integrals,” Euro. Phys. J.: Appl. Phys.52, 23305 (2010). [CrossRef]
  20. J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus anderson-localized resonances,” Phys. Rev. B68, 113410 (2003). [CrossRef]
  21. P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline au films -what is happening at the single-grain level?” J. Opt. A, Pure Appl. Opt.8, S219 (2006). [CrossRef]
  22. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett.100, 066408 (2008). [CrossRef] [PubMed]
  23. S. J. Orfanidis, Electromagnetic waves and antennas (Piscataway, NJ, 2004).
  24. P. Keil, R. Frahm, and D. Ltzenkirchen-Hecht, “Native oxidation of sputter deposited polycrystalline copper thin films during short and long exposure times: Comparative investigation by specular and non-specular grazing incidence x-ray absorption spectroscopy,” Corrosion Science52, 1305–1316 (2010). [CrossRef]
  25. http://refractiveindex.info .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited