OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8982–8997

Covariant description of transformation optics in nonlinear media

Oliver Paul and Marco Rahm  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8982-8997 (2012)
http://dx.doi.org/10.1364/OE.20.008982


View Full Text Article

Enhanced HTML    Acrobat PDF (1029 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The technique of transformation optics (TO) is an elegant method for the design of electromagnetic media with tailored optical properties. In this paper, we focus on the formal structure of TO theory. By using a complete covariant formalism, we present a general transformation law that holds for arbitrary materials including bianisotropic, magneto-optical, nonlinear and moving media. Due to the principle of general covariance, the formalism is applicable to arbitrary space-time coordinate transformations and automatically accounts for magneto-electric coupling terms. The formalism is demonstrated for the calculation of the second harmonic wave generation in a twisted TO concentrator.

© 2012 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(080.2710) Geometric optics : Inhomogeneous optical media
(190.0190) Nonlinear optics : Nonlinear optics
(350.4600) Other areas of optics : Optical engineering
(350.5720) Other areas of optics : Relativity
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

History
Original Manuscript: January 18, 2012
Revised Manuscript: March 22, 2012
Manuscript Accepted: March 25, 2012
Published: April 3, 2012

Citation
Oliver Paul and Marco Rahm, "Covariant description of transformation optics in nonlinear media," Opt. Express 20, 8982-8997 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-8982


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science312, 1777–1780 (2006). [CrossRef] [PubMed]
  3. G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys.8, 248 (2006). [CrossRef]
  4. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys.9, 45 (2007). [CrossRef]
  5. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33, 43–45 (2008). [CrossRef]
  6. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100, 063903 (2008). [CrossRef] [PubMed]
  7. N. Kundtz, D. Smith, and J. Pendry, “Electromagnetic design with transformation optics,” Proc. IEEE99, 1622–1633 (2011). [CrossRef]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science312, 977–980 (2006). [CrossRef]
  9. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1, 224–227 (2007). [CrossRef]
  10. N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett.105, 193902 (2010). [CrossRef]
  11. U. Leonhardt, “To invisibility and beyond,” Nature471, 292–293 (2011). [CrossRef] [PubMed]
  12. Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches,” J. Opt.13, 024002 (2011). [CrossRef]
  13. A. Novitsky, C.-W. Qiu, and S. Zouhdi, “Transformation-based spherical cloaks designed by an implicit transformation-independent method: theory and optimization,” New J. Phys.11, 113001 (2009). [CrossRef]
  14. D.-H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett.92, 013505 (2008). [CrossRef]
  15. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwells equations,” Photon. Nanostruct. Fundam. Appl.6, 87–95 (2008). [CrossRef]
  16. T. Han, C. Qiu, and X. Tang, “An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation,” J. Opt.12, 095103 (2010). [CrossRef]
  17. A. Nicolet, F. Zolla, and S. Guenneau, “Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section,” Opt. Lett.33, 1584–1586 (2008). [CrossRef] [PubMed]
  18. X. Wang, S. Qu, S. Xia, B. Wang, Z. Xu, H. Ma, J. Wang, C. Gu, X. Wu, L. Lu, and H. Zhou, “Numerical method of designing three-dimensional open cloaks with arbitrary boundary shapes,” Photon. Nanostruct. Fundam. Appl.8, 205–208 (2010). [CrossRef]
  19. W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E77, 066607 (2008). [CrossRef]
  20. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett.90, 241105 (2007). [CrossRef]
  21. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9, 129–132 (2010). [CrossRef]
  22. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater.8, 639–642 (2009). [CrossRef] [PubMed]
  23. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5, 687–692 (2009). [CrossRef]
  24. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009). [CrossRef]
  25. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett.15, 1005–1008 (1965). [CrossRef]
  26. W. L. Faust and C. H. Henry, “Mixing of visible and near-resonance infrared light in gap,” Phys. Rev. Lett.17, 1265–1268 (1966). [CrossRef]
  27. N. Bloembergen, “The stimulated raman effect,” Am. J. Phys.35, 989–1023 (1967). [CrossRef]
  28. J. T. Manassah, P. L. Baldeck, and R. R. Alfano, “Self-focusing, self-phase modulation, and diffraction in bulk homogeneous material,” Opt. Lett.13, 1090–1092 (1988). [CrossRef] [PubMed]
  29. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature337, 519–525 (1989). [CrossRef]
  30. G. Agrawal and N. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989). [CrossRef]
  31. J. J. Macklin, J. D. Kmetec, and C. L. Gordon, “High-order harmonic generation using intense femtosecond pulses,” Phys. Rev. Lett.70, 766–769 (1993). [CrossRef] [PubMed]
  32. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B12, 2102–2116 (1995). [CrossRef]
  33. A. Dubietis, R. Butkus, and A. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron.12, 163–172 (2006). [CrossRef]
  34. Y. R. Shen, “Recent advances in nonlinear optics,” Rev. Mod. Phys.48, 1–32 (1976). [CrossRef]
  35. M. Evans and S. Kielich, Modern Nonlinear Optics (Wiley, 1997).
  36. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  37. L. Bergamin, P. Alitalo, and S. A. Tretyakov, “Nonlinear transformation optics and engineering of the kerr effect,” Phys. Rev. B84, 205103 (2011). [CrossRef]
  38. E. J. Post, Formal Structure of Electromagnetics: General Covariance and Electromagnetics (Dover Publications, 1997).
  39. R. T. Thompson, “Transformation optics in nonvacuum initial dielectric media,” Phys. Rev. A82, 053801 (2010). [CrossRef]
  40. R. T. Thompson, S. A. Cummer, and J. Frauendiener, “A completely covariant approach to transformation optics,” J. Opt.13, 024008 (2011). [CrossRef]
  41. D. Cheng and J.-A. Kong, “Covariant descriptions of bianisotropic media,” Proc. IEEE56, 248–251 (1968). [CrossRef]
  42. L. Landau, E. Lifshitz, and L. Pitaevskii, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984).
  43. G. Rousseaux, “On the electrodynamics of minkowski at low velocities,” Europhys. Lett.84, 20002 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited