OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 8998–9003

Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave

Yuhang Wan, Zheng Zheng, Weijing Kong, Xin Zhao, Ya Liu, Yusheng Bian, and Jiansheng Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 8998-9003 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Goos-Hanchen effect is experimentally studied when the Bloch surface wave is excited in the forbidden band of a one-dimensional photonic band-gap structure. By tuning the refractive index of the cladding covering the truncated photonic crystal structure, either a guided or a surface mode can be excited. In the latter case, strong enhancement of the Goos-Hanchen shift induced by the Bloch-surface-wave results in sub-millimeter shifts of the reflected beam position. Such giant Goos-Hanchen shift, ~750 times of the wavelength, could enable many intriguing applications that had been less than feasible to implement before.

© 2012 OSA

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6690) Optics at surfaces : Surface waves
(260.0260) Physical optics : Physical optics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: January 18, 2012
Revised Manuscript: March 15, 2012
Manuscript Accepted: March 15, 2012
Published: April 3, 2012

Yuhang Wan, Zheng Zheng, Weijing Kong, Xin Zhao, Ya Liu, Yusheng Bian, and Jiansheng Liu, "Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave," Opt. Express 20, 8998-9003 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Goos and H. Hanchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.436(7-8), 333–346 (1947). [CrossRef]
  2. H. K. V. Lotsch, “Beam displacement at total reflection: The Goos-Hanchen effect,” Optik (Stuttg.)32, 116 (1970).
  3. O. C. de Beauregard, C. Imbert, and Y. Levy, “Observation of shifts in total reflection of a light beam by a multilayered structure,” Phys. Rev. D Part. Fields15(12), 3553–3562 (1977). [CrossRef]
  4. H. Schomerus and M. Hentschel, “Correcting ray optics at curved dielectric microresonator interfaces: phase-space unification of Fresnel filtering and the Goos-Hänchen shift,” Phys. Rev. Lett.96(24), 243903 (2006). [CrossRef] [PubMed]
  5. M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics3(6), 337–340 (2009). [CrossRef]
  6. Y. Wan, Z. Zheng, and J. Zhu, “Propagation-dependent beam profile distortion associated with the Goos-Hanchen shift,” Opt. Express17(23), 21313–21319 (2009). [CrossRef] [PubMed]
  7. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett.83(13), 2713–2715 (2003). [CrossRef]
  8. R. R. Wei, X. Chen, J. W. Tao, and C. F. Li, “Giant and negative bistable shifts for one-dimensional photonic crystal containing a nonlinear metamaterial defect,” Phys. Lett. A372(45), 6797–6800 (2008). [CrossRef]
  9. L. Chen, Z. Q. Cao, F. Ou, H. G. Li, Q. S. Shen, and H. C. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett.32(11), 1432–1434 (2007). [CrossRef] [PubMed]
  10. F. Huerkamp, T. A. Leskova, A. A. Maradudin, and B. Baumeier, “The Goos-Hänchen effect for surface plasmon polaritons,” Opt. Express19(16), 15483–15489 (2011). [CrossRef] [PubMed]
  11. X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett.85(3), 372–374 (2004). [CrossRef]
  12. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007). [CrossRef] [PubMed]
  13. X. Yin and L. Hesselink, “Goos-Hanchen shift surface plasmon resonance sensor,” Appl. Phys. Lett.89(26), 261108 (2006). [CrossRef]
  14. T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2x2 optical waveguide switch using the Goos-Hanchen shift effect,” Appl. Phys. Lett.76(20), 2841–2843 (2000). [CrossRef]
  15. W. J. Wild and C. L. Giles, “Goos-Hanchen shifts from absorbing media,” Phys. Rev. A25(4), 2099–2101 (1982). [CrossRef]
  16. H. M. Lai and S. W. Chan, “Large and negative Goos-Hanchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett.27(9), 680–682 (2002). [CrossRef] [PubMed]
  17. Y. Y. Huang, W. T. Dong, L. Gao, and D. W. Qiu, “Large positive and negative lateral shifts near pseudo-Brewster dip on reflection from a chiral metamaterial slab,” Opt. Express19(2), 1310–1323 (2011). [CrossRef] [PubMed]
  18. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  20. Y. Wan, Z. Zheng, and J. Zhu, “Experimental observation of the propagation-dependent beam profile distortion and Goos-Hanchen shift under the surface plasmon resonance condition,” J. Opt. Soc. Am. B28(2), 314–318 (2011). [CrossRef]
  21. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter44(19), 10961–10964 (1991). [CrossRef] [PubMed]
  22. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett.74(13), 1800–1802 (1999). [CrossRef]
  23. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem.105(2), 360–364 (2005). [CrossRef]
  24. I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009). [CrossRef]
  25. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett.10(6), 2087–2091 (2010). [CrossRef] [PubMed]
  26. D. Felbacq, A. Moreau, and R. Smaâli, “Goos-Hanchen effect in the gaps of photonic crystals,” Opt. Lett.28(18), 1633–1635 (2003). [CrossRef] [PubMed]
  27. L. G. Wang and S. Y. Zhu, “Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals,” Opt. Lett.31(1), 101–103 (2006). [CrossRef] [PubMed]
  28. V. V. Moskalenko, I. V. Soboleva, and A. A. Fedyanin, “Surface wave-induced enhancement of the Goos-Hanchen effect in one-dimensional photonic crystals,” JETP Lett.91(8), 382–386 (2010). [CrossRef]
  29. Y. Wan, Z. Zheng, W. Kong, Y. Liu, Z. Lu, and Y. Bian, “Direct experimental observation of giant Goos-Hanchen shifts from bandgap-enhanced total internal reflection,” Opt. Lett.36(18), 3539–3541 (2011). [CrossRef] [PubMed]
  30. W. M. Robertson, “Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays,” J. Lightwave Technol.17(11), 2013–2017 (1999). [CrossRef]
  31. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett.91(24), 241109 (2007). [CrossRef]
  32. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am.67(4), 423–438 (1977). [CrossRef]
  33. D. R. Lide, ed., Handbook of Chemistry and Physics 85th ed. (CRC Press, 2005)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited