OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9004–9018

Single element spectral splitting solar concentrator for multiple cells CPV system

Marco Stefancich, Ahmed Zayan, Matteo Chiesa, Stefano Rampino, Dario Roncati, Lionel Kimerling, and Jurgen Michel  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 9004-9018 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Shockley Read Hall equation poses a limit to the maximum conversion efficiency of broadband solar radiation attainable by means of a single bandgap converter. A possible approach to overcome such a limit is to convert different parts of the broadband spectrum using different single junction converters. We consider here a different modus operandi where a single low-cost optimized plastic prismatic structure performs simultaneously the tasks of concentrating the solar light and, based on the dispersive behavior of the employed material, spatially splitting it into its spectral component. We discuss its approach, optical simulations, fabrication issues and preliminary experimental results demonstrating its feasibility for cost effective high efficiency Concentrated Photovoltaic Systems (CPV) systems.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.1360) Optical devices : Beam splitters
(260.2160) Physical optics : Energy transfer

ToC Category:
Solar Energy

Original Manuscript: February 13, 2012
Revised Manuscript: March 12, 2012
Manuscript Accepted: March 14, 2012
Published: April 3, 2012

Marco Stefancich, Ahmed Zayan, Matteo Chiesa, Stefano Rampino, Dario Roncati, Lionel Kimerling, and Jurgen Michel, "Single element spectral splitting solar concentrator for multiple cells CPV system," Opt. Express 20, 9004-9018 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  2. A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review,” Sol. Energy Mater. Sol. Cells84(1-4), 19–69 (2004). [CrossRef]
  3. L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev.37(2), 443–449 (1990). [CrossRef]
  4. W. Welford and R. Winston, High collection nonimaging optics (Academic Press, New York, 1989).
  5. R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007). [CrossRef]
  6. E. D. Jackson, “Solar energy converter” (US Patent 2,949,498, 1960).
  7. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009). [CrossRef]
  8. J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl.19(3), 352–360 (2011). [CrossRef]
  9. B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl.19(1), 61–72 (2011). [CrossRef]
  10. M. A. Green and A. Ho‐Baillie, “Forty three per cent composite split‐spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl.18(1), 42–47 (2010). [CrossRef]
  11. D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating pv system based on spectral separation of solar radiation,” Phys. Status Solidi A206(2), 375–378 (2009). [CrossRef]
  12. L. Fraas, J. Avery, H. Huang, L. Minkin, and E. Shifman, “Demonstration of a 33% efficient cassegrainian solar module,” in Proceedings of IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 679-682.
  13. B. Groß, G. Peharz, G. Siefer, M. Peters, J. Goldschmidt, M. Steiner, W. Guter, V. Klinger, B. George, and F. Dimroth, “Highly efficient light splitting photovoltaic receiver,” in Proceedings of 24th European Photovoltaic Solar Energy Conference (2009), pp. 130–134.
  14. U. Ortabasi, A. Lewandowski, R. Mcconnell, D. J. Aiken, P. L. Sharps, and B. G. Bovard, “Dish/photovoltaic cavity converter (pvcc) system for ultimate solar-to-electricty conversion efficiency-general concept and first performance predictions,” in Proceedings of IEEE 29th Photovoltaic Specialists Conference (IEEE, 2002), pp. 1616-1620.
  15. R. Menon, “Ultra-high efficiency multi-junction solar cells using polychromatic diffractive concentrators” (US Patent 20100095999, 2010).
  16. R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE7043, 1–8 (2008).
  17. J. E. Ludman, “Holographic solar concentrator,” Appl. Opt.21(17), 3057–3058 (1982). [CrossRef] [PubMed]
  18. J. M. Castro, D. Zhang, and R. Kostuk, “Planar holographic solar concentrators for low and medium ratio concentration system ” in Proceedings of Optics for Solar Energy (Optical Society of America, Tucson, 2010).
  19. C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Sol. Wind Technol.5(4), 395–404 (1988). [CrossRef]
  20. W. H. Bloss, M. Griesinger, and E. R. Reinhardt, “Dispersive concentrating systems based on transmission phase holograms for solar applications,” Appl. Opt.21(20), 3739–3742 (1982). [CrossRef] [PubMed]
  21. P. Sharlandjiev and B. Markova, “On fabrication of large format optoelectronic elements,” J. Optoelectron. Adv. Mater.5, 39–44 (2003).
  22. P. Borden, P. Gregory, O. Moore, H. Vander Plas, and L. James, “A 10-unit dichroic filter spectral splitter module,” in Proceedings of IEEE 15th Photovoltaic Specialists Conference (IEEE, 1981), PP. 311-316.
  23. J. Onffroy, D. Stoltzmann, R. Lin, and G. Knowles, “High-efficiency concentration/multi-solar-cell system for orbital power generation,” in Proceedings of 15th Intersociety Energy Conversion Engineering Conference (1980), PP. 371-376.
  24. D. Wagner and L. He, “An innovative solar system with high efficiency and low cost,” in Proceedings of IEEE 35th Photovoltaic Specialists Conference (IEEE, 2010), pp. 003039-003042.
  25. J. P. Penn, “High concentration spectrum splitting solar collector” (US Patent 6469241, 2002).
  26. A. M. Fox, Optical properties of solids (Oxford Univ Press, 2010).
  27. Schott Ag, “Abbe diagram for schott glasses,” (2011), http://www.us.schott.com/advanced_optics/english/download/schott_abbe_nd_vd_pgf_july_2011_us.pdf .
  28. J. D. Lytle, G. W. Wilkerson, and J. G. Jaramillo, “Wideband optical transmission properties of seven thermoplastics,” Appl. Opt.18(11), 1842–1846 (1979). [CrossRef] [PubMed]
  29. F. Technologies, “Polycarbonate transmission coefficient,” http://www.fresneltech.com/graphs/polycarbonate_graph.html .
  30. J. Ward, K. Ramanathan, F. Hasoon, T. Coutts, J. Keane, T. Moriarty, and R. Noufi, “Cu (in, ga) se2 thin-film concentrator solar cells,” in Proceedings of NCPV Program review Meeting (2001).
  31. Y. Hirai, H. Nagashima, Y. Kurokawa, and A. Yamada, “Experimental and theoretical evaluation of cu (in, ga) se2 concentrator solar cells,” Jpn. J. Appl. Phys.51(1), 04101 (2012). [CrossRef]
  32. A. Bechiri, F. Benmakhlouf, and N. Bouarissa, “Calculation of electronic and optical properties of zn-based ii-vi semiconductors,” Phys. Procedia2(3), 803–812 (2009). [CrossRef]
  33. S. Chen, X. Gong, A. Walsh, and S. H. Wei, “Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of ii-vi and i-iii-vi_ {2} compounds,” Phys. Rev. B79(16), 165211 (2009). [CrossRef]
  34. A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energy Mater. Sol. Cells51(3-4), 269–290 (1998). [CrossRef]
  35. P. G. Nelson, “An analysis of scattered light in reflecting and refracting primary objectives for coronagraphs” in Technical Note 4 (Coronal Solar Magnetism Observatory, 2006).
  36. D. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt.34(14), 2469–2475 (1995). [CrossRef] [PubMed]
  37. M. T. Gale, “Replication techniques for diffractive optical elements,” Microelectron. Eng.34(3-4), 321–339 (1997). [CrossRef]
  38. M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy87(12), 3766–3778 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited