OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9046–9051

1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser

Antti Rantamäki, Jussi Rautiainen, Jari Lyytikäinen, Alexei Sirbu, Alexandru Mereuta, Eli Kapon, and Oleg G. Okhotnikov  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 9046-9051 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1110 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an optically pumped semiconductor disk laser operating at 1580 nm with 4.6 W of output power, which represents the highest output power reported from this type of laser. 1 W of output power at 785 nm with nearly diffraction-limited beam has been achieved from this laser through intracavity frequency doubling, which offers an attractive alternative to Ti:sapphire lasers and laser diodes in a number of applications, e.g., in spectroscopy, atomic cooling and biophotonics.

© 2012 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 8, 2012
Revised Manuscript: March 15, 2012
Manuscript Accepted: March 29, 2012
Published: April 3, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Antti Rantamäki, Jussi Rautiainen, Jari Lyytikäinen, Alexei Sirbu, Alexandru Mereuta, Eli Kapon, and Oleg G. Okhotnikov, "1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser," Opt. Express 20, 9046-9051 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997). [CrossRef]
  2. Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett. 33(15), 1705–1707 (2008). [CrossRef] [PubMed]
  3. M. Rahim, F. Felder, M. Fill, and H. Zogg, “Optically pumped 5 μm IV-VI VECSEL with Al-heat spreader,” Opt. Lett. 33(24), 3010–3012 (2008). [CrossRef] [PubMed]
  4. J. Chilla, Q. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, “Recent advances in optically pumped semiconductor lasers,” Proc. SPIE 6451, 645109, 645109-10 (2007). [CrossRef]
  5. A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. Koch, T. Wang, Y. Kaneda, J. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical external- cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1772–1778 (2011). [CrossRef]
  6. T. Wang, Y. Kaneda, J. Yarborough, J. Hader, J. Moloney, A. Chernikov, S. Chatterjee, S. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010). [CrossRef]
  7. J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004). [CrossRef]
  8. S. Hilbich, W. Seelert, V. Ostroumov, C. Kannengiesser, R. Elm, J. Mueller, E. Weiss, H. Zhou, and J. Chilla, “New wavelengths in the yellow-orange range between 545 nm and 580 nm generated by an intracavity frequency-doubled optically pumped semiconductor laser,” Proc. SPIE 6451, 64510C (2007). [CrossRef]
  9. M. Fallahi, Y. Li Fan, C. Kaneda, J. Hessenius, Hader, J. V. Hongbo Li, B. Moloney, W. Kunert, S. W. Stolz, J. Koch, Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008). [CrossRef]
  10. T. Leinonen, V. Korpijärvi, A. Härkonen, and M. Guina, “7.4 W yellow GaInNAs based semiconductor disk laser,” Electron. Lett. 47(20), 1139–1440 (2011). [CrossRef]
  11. J. Hastie, J. Hopkins, S. Calvez, C. Jeon, D. Burns, R. Abram, E. Riis, A. Ferguson, and M. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003). [CrossRef]
  12. W. Zhang, T. Ackemann, S. McGinily, M. Schmid, E. Riis, and A. I. Ferguson, “Operation of an optical in-well-pumped vertical-external-cavity surface-emitting laser,” Appl. Opt. 45(29), 7729–7735 (2006). [CrossRef] [PubMed]
  13. M. Schmid, S. Benchabane, F. Torabi-Goudarzi, R. Abram, A. Ferguson, and E. Riis, “Optical in-well pumping of a vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 84(24), 4860 (2004). [CrossRef]
  14. J. Hastie, L. Morton, A. Kemp, M. Dawson, A. Krysa, and J. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface emitting laser,” Appl. Phys. Lett. 89(6), 061114 (2006). [CrossRef]
  15. P. J. Schlosser, J. E. Hastie, S. Calvez, A. B. Krysa, and M. D. Dawson, “InP/AlGaInP quantum dot semiconductor disk lasers for CW TEM00 emission at 716 - 755 nm,” Opt. Express 17(24), 21782–21787 (2009). [CrossRef] [PubMed]
  16. J. Rautiainen, A. Härkönen, V. M. Korpijärvi, P. Tuomisto, M. Guina, and O. G. Okhotnikov, “2.7 W tunable orange-red GaInNAs semiconductor disk laser,” Opt. Express 15(26), 18345–18350 (2007). [CrossRef] [PubMed]
  17. T. Jouhti, C. Peng, E. Pavelescu, J. Konttinen, L. Gomes, O. Okhotnikov, and M. Pessa, “Strain-compensated GaInNAs structures for 1.3-μm lasers,” IEEE J. Sel. Top. Quantum Electron. 8(4), 787–794 (2002). [CrossRef]
  18. V. Korpijärvi, M. Guina, J. Puustinen, P. Tuomisto, J. Rautiainen, A. Härkönen, A. Tukiainen, O. Okhotnikov, and M. Pessa, “MBE grown GaInNAs-based multi-Watt disk lasers,” J. Cryst. Growth 311(7), 1868–1871 (2009). [CrossRef]
  19. V. M. Korpijärvi, T. Leinonen, J. Puustinen, A. Härkönen, and M. D. Guina, “11 W single gain-chip dilute nitride disk laser emitting around 1180 nm,” Opt. Express 18(25), 25633–25641, 641 (2010). [CrossRef] [PubMed]
  20. J. Hopkins, S. Smith, C. Jeon, H. Sun, D. Burns, S. Calvez, M. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004). [CrossRef]
  21. M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. P. A. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1-1.3 μm,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1763–1771 (2011). [CrossRef]
  22. J. Rautiainen, I. Krestnikov, J. Nikkinen, and O. G. Okhotnikov, “2.5 W orange power by frequency conversion from a dual-gain quantum-dot disk laser,” Opt. Lett. 35(12), 1935–1937 (2010). [CrossRef] [PubMed]
  23. H. Lindberg, M. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett. 40(10), 601–602 (2004). [CrossRef]
  24. M. Guden and J. Piprek, “Material parameters of quaternary III-V semiconductors for multilayer mirrors at wavelength,” Model. Simul. Mater. Sci. Eng. 4(4), 349–357 (1996). [CrossRef]
  25. N. Schulz, J. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser Photon. Rev. 2(3), 160–181 (2008). [CrossRef]
  26. C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 μm vertical external cavity surface emitting laser with broadband integrated dielectric-metal mirror,” Electron. Lett. 40(12), 734–735 (2004). [CrossRef]
  27. A. Syrbu, J. Fernandez, J. Behrend, C. Berseth, J. Carlin, A. Rudra, and E. Kapon, “InGaAs/lnGaAsP/lnP edge emitting laser diodes on p-GaAs substrates obtained by localised wafer fusion,” Electron. Lett. 33(10), 866–868 (1997). [CrossRef]
  28. J. Rautiainen, L. Toikkanen, J. Lyytikainen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. Okhotnikov, “Wafer fused optically-pumped semiconductor disk laser operating at 1220-nm,” in Proceedings of IEEE Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (Munich, 2009, paper CB5_3.
  29. J. Lyytikäinen, J. Rautiainen, L. Toikkanen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. G. Okhotnikov, “13-µm optically-pumped semiconductor disk laser by wafer fusion,” Opt. Express 17(11), 9047–9052 (2009). [CrossRef] [PubMed]
  30. J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-μm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett. 23(13), 917–919 (2011). [CrossRef]
  31. J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. G. Okhotnikov, “2.6 W optically-pumped semiconductor disk laser operating at 1.57-μm using wafer fusion,” Opt. Express 16(26), 21881–21886 (2008). [CrossRef] [PubMed]
  32. A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser,” Opt. Express 18(21), 21645–21650 (2010). [CrossRef] [PubMed]
  33. M. Schmid, “Optically in-well-pumped VECSELs: An attractive new aource in the near-IR,” Photon. Spectra 38(11), 58–64 (2004).
  34. B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Ö. Fricke, H. Wenzel, M. Zorn, G. Ö. Erbert, and G. Ü. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009). [CrossRef]
  35. A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev, and E. Kapon, “Wafer-fused optically-pumped VECSELs emitting in the 1310 nm and 1550 nm wavebands,” Adv. Opt. Technol. 2011, 1–8 (2011). [CrossRef]
  36. Z. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77(5), 651 (2000). [CrossRef]
  37. J. H. Lee, S. M. Lee, T. Kim, and Y. J. Park, “7 W high-efficiency continuous-wave green light generation by intracavity frequency doubling of an end-pumped vertical external-cavity surface emitting semiconductor laser,” Appl. Phys. Lett. 89(24), 241107 (2006). [CrossRef]
  38. J.-Y. Kim, S. Cho, S.-M. Lee, G. B. Kim, J. Lee, J. Yoo, K.-S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43(2), 105–107 (2007). [CrossRef]
  39. J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB Lasers,” IEEE J. Quantum Electron. 33(12), 2295–2300 (1997). [CrossRef]
  40. C. Wang, L. Reekie, Y. Chow, and W. Gambling, “Efficient blue light generation from a diode laser pumped Nd: YAG laser,” Opt. Commun. 167(1–6), 155–158 (1999). [CrossRef]
  41. C. Du, Z. Wang, J. Liu, X. Xu, B. Teng, K. Fu, J. Wang, Y. Liu, and Z. Shao, “Efficient intracavity second-harmonic generation at 1.06 µm in a BiB3O6 (BIBO) crystal,” Appl. Phys. B 73(3), 215–217 (2001). [CrossRef]
  42. A. Maclean, A. Kemp, S. Calvez, J. Kim, T. Kim, M. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44(3), 216–225 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited