OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9064–9078

Numerical retrieval of thin aluminium layer properties from SPR experimental data

Dominique Barchiesi  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 9064-9078 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The inverse problem for Surface Plasmon Resonance measurements [1] on a thin layer of aluminium in the Kretschmann configuration, is solved with a Particle Swarm Optimization method. The optical indexes as well as the geometrical parameters are found for the best fit of the experimental reflection coefficient in s and p polarization, for four samples, under three theoretical hypothesis on materials: the metal layer is pure, melted with its oxyde, or coated with oxyde. The influence of the thickness of the metal layer on its optical properties is then investigated.

© 2012 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(100.3190) Image processing : Inverse problems
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: February 27, 2012
Revised Manuscript: March 27, 2012
Manuscript Accepted: March 27, 2012
Published: April 3, 2012

Dominique Barchiesi, "Numerical retrieval of thin aluminium layer properties from SPR experimental data," Opt. Express 20, 9064-9078 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc.73, 40–44 (1959). [CrossRef]
  2. E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflachenplasmaschwingungen,” Z. Phys.241, 313–324 (1971). [CrossRef]
  3. A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun.3, 254–258 (1971). [CrossRef]
  4. D. Macias and D. Barchiesi, “Identification of unknown experimental parameters from noisy apertureless scanning near-field optical microscope data with an evolutionary procedure,” Opt. Lett.30, 2557–2559 (2005). [CrossRef] [PubMed]
  5. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IV) (IEEE, 1995), pp. 1942–1948.
  6. S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput.2, 18–28 (2011). [CrossRef]
  7. S. Kessentini, D. Barchiesi, T. Grosges, and M. Lamy de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2010), pp. 2315–2320.
  8. M. Clerc, “A method to improve standard PSO,” Tech. Rep. DRAFT MC2009-03-13, France Telecom R&D (2009).
  9. H. P. Schwefel, Evolution and Optimum Seeking (John Wiley & Sons Inc., 1995).
  10. D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-nield optics,” J. Opt. Soc. Am. A21, 1465–1471 (2004). [CrossRef]
  11. D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in “Proceedings of IEEE International Conference on Computers & Industrial Engineering (CIE)” (IEEE, 2009), 542–547.
  12. E. Kretschmann, “The ATR method with focused light - application to guided waves on a grating,” Opt. Commun.23, 41–44 (1978). [CrossRef]
  13. D. Barchiesi, “Optimization of biosensors,” in New Perspectives in biosensors technology and applications, P. A. Serra, ed. (INTECH Open Access, Rijeka, Croatia, 2011), pp. 105–126.
  14. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substantzen. i. dielektrizitätskonstanten und leifähigkeiten der misckörper aus isotropen substanzen,” Ann. Phys. (Leipzig)24, 636–679 (1935).
  15. A. J. Abu El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys.93, 2590–2594 (2003). [CrossRef]
  16. W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys.44, 3897–3903 (1973). [CrossRef]
  17. S. W. Dean, D. Knotkova, and K. Kreislovain ISOCORRAG International Atmospheric Exposure Program: Summary of Results, DS71 (ASTM International, 2010).
  18. D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B93, 177–181 (2008). [CrossRef]
  19. D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun.285, 1619–1623 (2012). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants (Academic Press Inc., 1985).
  21. Z. W. Zhao, B. K. T. abd L. Huang, S. Lau, and J. X. Gao, “Influence of thermal annealing on optical properties and structure of aluminium oxide thin films by filtered cathodic vacuum arc,” Opt. Mater.27, 465–469 (2004). [CrossRef]
  22. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell garnett and bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett.15, 263–266 (1997). [CrossRef]
  23. A. Vial, T. Laroche, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett.91, 123101 (2007).
  24. A. Otto, “Spectroscopy of surface polaritons by attenuated total reflection” in Optical properties of solids - new developments (North Holland, 1974), pp. 679–729.
  25. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  26. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express16, 20227–20240, (2008). [CrossRef] [PubMed]
  27. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005). [CrossRef]
  28. A. Kolomenskii, P. Gershon, and H. Schuessler, “Sensitivity and detection limit of concentration and absorption measurements by laser-induced surface-plasmon resonance,” Appl. Opt.36, 6539–6547 (1997). [CrossRef]
  29. D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: Attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A5, 1863–1866 (1988). [CrossRef]
  30. J. M. Vigoureux, “Polynomial formulation of reflection and transmission by stratified planar structures,” J. Opt. Soc. Am. A8, 1697–1701 (1991). [CrossRef]
  31. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A13, 1024–1035 (1996). [CrossRef]
  32. D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy229, 525–532 (2008). [CrossRef]
  33. P. Sandoz, T. Gharbi, and G. Tribillon, “Phase-shifting methods for interferometers using laser-diode frequency-modulation,” Opt. Commun.132, 227–231 (1996). [CrossRef]
  34. A. Courteville, T. Gharbi, and J. Y. Cornu, “Noncontact MMG sensor based on the optical feedback effect in a laser diode,” J. Biomed. Opt.3, 281–285 (1998). [CrossRef]
  35. B. Guizal and D. Felbacq, “Electromagnetic beam diffraction by a finite strip grating,” Opt. Commun.165, 1–6 (1999). [CrossRef]
  36. F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays,” Opt. Commun.282, 1463–1466 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited