OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9135–9143

Frequency up-converted lasing in polymeric composites with two-photon absorbing antenna

Qi Chen, Chunfeng Zhang, Bin Jiang, Xiaoyong Wang, Yan Jun Liu, Yue Cao, and Min Xiao  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 9135-9143 (2012)
http://dx.doi.org/10.1364/OE.20.009135


View Full Text Article

Enhanced HTML    Acrobat PDF (1773 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Energy-transfer-coupled polymeric composites with donors of two-absorbing dyes and acceptors of polymer gain medium are introduced for up-converted laser applications. The two-photon pumped hybrid polymer lasers show significant performance improvement with nearly 10 times reduction of lasing threshold and over 100 times extension of lifespan.

© 2012 OSA

OCIS Codes
(160.3380) Materials : Laser materials
(190.4180) Nonlinear optics : Multiphoton processes
(260.2160) Physical optics : Energy transfer

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 16, 2012
Revised Manuscript: March 25, 2012
Manuscript Accepted: March 29, 2012
Published: April 4, 2012

Citation
Qi Chen, Chunfeng Zhang, Bin Jiang, Xiaoyong Wang, Yan Jun Liu, Yue Cao, and Min Xiao, "Frequency up-converted lasing in polymeric composites with two-photon absorbing antenna," Opt. Express 20, 9135-9143 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-9135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008). [CrossRef] [PubMed]
  2. G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature415(6873), 767–770 (2002). [CrossRef] [PubMed]
  3. C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011). [CrossRef] [PubMed]
  4. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett.68(25), 3549–3551 (1996). [CrossRef]
  5. G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and F. K. Hopkins, “Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex,” Opt. Lett.31(3), 359–361 (2006). [CrossRef] [PubMed]
  6. G. S. He, R. Helgeson, T. C. Lin, Q. D. Zheng, F. Wudl, and P. N. Prasad, “One-, two-, and three-photon pumped lasing in a novel liquid dye salt system,” IEEE J. Quantum Electron.39(8), 1003–1008 (2003). [CrossRef]
  7. C. Bauer, B. Schnabel, E.-B. Kley, U. Scherf, H. Giessen, and R. F. Mahrt, “Two-photon pumped lasing from two-dimensional photonic bandgap structure with polymeric gain material,” Adv. Mater. (Deerfield Beach Fla.)14(9), 673–676 (2002). [CrossRef]
  8. G. Tsiminis, A. Ruseckas, I. D. W. Samuel, and G. A. Turnbull, “A two-photon pumped polyfluorene laser,” Appl. Phys. Lett.94(25), 253304 (2009). [CrossRef]
  9. F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011). [CrossRef]
  10. C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, “Multiphoton route to ZnO nanowire lasers,” Opt. Lett.31(22), 3345–3347 (2006). [CrossRef] [PubMed]
  11. C. F. Zhang, F. Zhang, T. Zhu, A. Cheng, J. Xu, Q. Zhang, S. E. Mohney, R. H. Henderson, and Y. A. Wang, “Two-photon-pumped lasing from colloidal nanocrystal quantum dots,” Opt. Lett.33(21), 2437–2439 (2008). [CrossRef] [PubMed]
  12. C. F. Zhang, F. Zhang, A. Cheng, B. Kimball, A. Y. Wang, and J. Xu, “Frequency up-converted lasing of nanocrystal quantum dots in microbeads,” Appl. Phys. Lett.95(18), 183109 (2009). [CrossRef]
  13. C. F. Zhang, F. Zhang, X. W. Sun, Y. Yang, J. Wang, and J. Xu, “Frequency-upconverted whispering-gallery-mode lasing in ZnO hexagonal nanodisks,” Opt. Lett.34(21), 3349–3351 (2009). [CrossRef] [PubMed]
  14. G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett.94(5), 051106 (2009). [CrossRef]
  15. G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett.67(25), 3703–3705 (1995). [CrossRef]
  16. J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008). [CrossRef]
  17. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000). [CrossRef] [PubMed]
  18. D. Moses, “High quantum efficiency luminescence from a conducting polymer in solution: a novel polymer laser dye,” Appl. Phys. Lett.60(26), 3215–3216 (1992). [CrossRef]
  19. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996). [CrossRef]
  20. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugate-polymer microcavities,” Nature382(6593), 695–697 (1996). [CrossRef]
  21. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. (Deerfield Beach Fla.)12(22), 1655–1668 (2000). [CrossRef]
  22. V. G. Kozlov, V. Bulovic, P. E. Burroughs, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997). [CrossRef]
  23. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007). [CrossRef] [PubMed]
  24. H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, “A high gain and high charge carrier mobility indenofluorene-phenathrene copolymer for light amplication and organic lasing,” Adv. Mater. (Deerfield Beach Fla.)23(7), 894–897 (2011). [CrossRef]
  25. P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. (Deerfield Beach Fla.)23(7), 869–872 (2011). [CrossRef]
  26. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express14(20), 9211–9216 (2006). [CrossRef] [PubMed]
  27. A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007). [CrossRef]
  28. Th. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys.437(1-2), 55–75 (1948). [CrossRef]
  29. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer, New York, 1999).
  30. I. B. Martini, A. D. Smith, and B. J. Schwartz, “Exciton-exciton annihilation and the production of interchain species in conjugated polymer films: comparing the ultrafast stimulated emission and photoluminescence dynamics of MEH-PPV,” Phys. Rev. B69(3), 035204 (2004). [CrossRef]
  31. S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002). [CrossRef]
  32. J.-W. Yu, J. K. Kim, D. Y. Kim, C. Kim, N. W. Song, and D. Kim, “Prediction of efficient energy transfer in emissive polymer blends based on Föster radius and the excited state lifetime of acceptors,” Curr. Appl. Phys.6(1), 59–65 (2006). [CrossRef]
  33. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998). [CrossRef]
  34. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).
  35. R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009). [CrossRef]
  36. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434(7035), 876–879 (2005). [CrossRef] [PubMed]
  37. L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited