OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9197–9202

In vivo Brillouin optical microscopy of the human eye

Giuliano Scarcelli and Seok Hyun Yun  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 9197-9202 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (792 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first Brillouin measurement of the human eye in vivo. We constructed a Brillouin optical scanner safe for human use by employing continuous-wave laser light at 780 nm at a low power of 0.7 mW. With a single scan along the optic axis of the eye, the axial profile of Brillouin frequency shift was obtained with a pixel acquisition time of 0.4 s and axial resolution of about 60 μm, showing the depth-dependent biomechanical properties in the cornea and lens.

© 2012 OSA

OCIS Codes
(290.5830) Scattering : Scattering, Brillouin
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 21, 2012
Revised Manuscript: March 30, 2012
Manuscript Accepted: April 1, 2012
Published: April 5, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Giuliano Scarcelli and Seok Hyun Yun, "In vivo Brillouin optical microscopy of the human eye," Opt. Express 20, 9197-9202 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics2(1), 39–43 (2008). [CrossRef] [PubMed]
  2. X. Bao, M. DeMerchant, A. Brown, and T. Bremner, “Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor,” J. Lightwave Technol.19(11), 1698–1704 (2001). [CrossRef]
  3. G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattawar, and E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ.36(3), 165–178 (1991). [CrossRef]
  4. J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci.214(1197), 449–470 (1982). [CrossRef] [PubMed]
  5. J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature284(5755), 489–491 (1980). [CrossRef] [PubMed]
  6. G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express19(11), 10913–10922 (2011). [CrossRef] [PubMed]
  7. S. Reiß, G. Burau, O. Stachs, R. Guthoff, and H. Stolz, “Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens,” Biomed. Opt. Express2(8), 2144–2159 (2011). [CrossRef] [PubMed]
  8. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J.101(6), 1539–1545 (2011). [CrossRef] [PubMed]
  9. S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010). [CrossRef] [PubMed]
  10. G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci.53(1), 185–190 (2012). [CrossRef] [PubMed]
  11. C. R. Ethier, M. Johnson, and J. Ruberti, “Ocular biomechanics and biotransport,” Annu. Rev. Biomed. Eng.6(1), 249–273 (2004). [CrossRef] [PubMed]
  12. G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett.33(24), 2979–2981 (2008). [CrossRef] [PubMed]
  13. D. Sliney, D. Aron-Rosa, F. DeLori, F. Fankhauser, R. Landry, M. Mainster, J. Marshall, B. Rassow, B. Stuck, S. Trokel, T. M. West, M. Wolffe, and International Commission on Non-Ionizing Radiation Protection, “Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: statement from a task group of the international commission on non-ionizing radiation Protection (ICNIRP),” Appl. Opt.44(11), 2162–2176 (2005). [CrossRef] [PubMed]
  14. T. Okuno, M. Kojima, I. Hata, and D. H. Sliney, “Temperature rises in the crystalline lens from focal irradiation,” Health Phys.88(3), 214–222 (2005). [CrossRef] [PubMed]
  15. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007). [CrossRef] [PubMed]
  16. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005). [CrossRef] [PubMed]
  17. areA. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011). [CrossRef]
  18. M. Kohlhaas, E. Spoerl, T. Schilde, G. Unger, C. Wittig, and L. E. Pillunat, “Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light,” J. Cataract Refract. Surg.32(2), 279–283 (2006). [CrossRef] [PubMed]
  19. J. B. Randleman, D. G. Dawson, H. E. Grossniklaus, B. E. McCarey, and H. F. Edelhauser, “Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery,” J. Refract. Surg.24(1), S85–S89 (2008). [PubMed]
  20. C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res.59(5), 617–627 (1994). [CrossRef] [PubMed]
  21. S. J. McGinty and R. J. W. Truscott, “Presbyopia: the first stage of nuclear cataract?” Ophthalmic Res.38(3), 137–148 (2006). [CrossRef] [PubMed]
  22. C. Roberts, “The cornea is not a piece of plastic,” J. Refract. Surg.16(4), 407–413 (2000). [PubMed]
  23. D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg.31(1), 156–162 (2005). [CrossRef] [PubMed]
  24. B. M. Fontes, R. Ambrósio, G. C. Velarde, and W. Nosé, “Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” J. Refract. Surg.27(3), 209–215 (2011). [PubMed]
  25. A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited