OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9227–9242

Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration

Jeffrey B. Driscoll, Noam Ophir, Richard R. Grote, Jerry I. Dadap, Nicolae C. Panoiu, Keren Bergman, and Richard M. Osgood, Jr.  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 9227-9242 (2012)
http://dx.doi.org/10.1364/OE.20.009227


View Full Text Article

Enhanced HTML    Acrobat PDF (2156 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate quasi-phase-matched (QPM) four-wave-mixing (FWM) in silicon (Si) nanowire waveguides with sinusoidally modulated width. We perform discrete wavelength conversion over 250 nm, and observe 12 dB conversion efficiency (CE) enhancement for targeted wavelengths more than 100 nm away from the edge of the 3-dB conversion bandwidth. The QPM process in Si nanowires is rigorously modeled, with results explaining experimental observations. The model is further used to investigate the dependence of the CE on key device parameters, and to introduce devices that facilitate wavelength conversion between the C-band and mid-IR. Devices based on a superposition of sinusoidal gratings are investigated theoretically, and are shown to provide CE enhancement over the entire C-band. Width-modulation is further shown to be compatible with zero-dispersion-wavelength pumping for broadband wavelength conversion. The results indicate that QPM via width-modulation is an effective technique for extending the spectral domain of efficient FWM in Si waveguides.

© 2012 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4223) Nonlinear optics : Nonlinear wave mixing
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 23, 2012
Revised Manuscript: March 15, 2012
Manuscript Accepted: March 20, 2012
Published: April 5, 2012

Citation
Jeffrey B. Driscoll, Noam Ophir, Richard R. Grote, Jerry I. Dadap, Nicolae C. Panoiu, Keren Bergman, and Richard M. Osgood, "Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration," Opt. Express 20, 9227-9242 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-9227


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express13(12), 4629–4637 (2005). [CrossRef] [PubMed]
  2. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007). [CrossRef] [PubMed]
  3. R. Espinola, J. Dadap, R. M. Osgood, S. McNab, and Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express13(11), 4341–4349 (2005). [CrossRef] [PubMed]
  4. N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011). [CrossRef]
  5. W. Astar, J. B. Driscoll, X. P. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010). [CrossRef]
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008). [CrossRef]
  7. A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express18(17), 18047–18055 (2010). [CrossRef] [PubMed]
  8. H. Ji, M. H. Pu, H. Hu, M. Galili, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol.29(4), 426–431 (2011). [CrossRef]
  9. F. Li, M. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express18(4), 3905–3910 (2010). [CrossRef] [PubMed]
  10. N. C. Panoiu, X. Chen, and R. M. Osgood., “Modulation instability in silicon photonic nanowires,” Opt. Lett.31(24), 3609–3611 (2006). [CrossRef] [PubMed]
  11. Y. T. Dai, X. P. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express17(9), 7004–7010 (2009). [CrossRef] [PubMed]
  12. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010). [CrossRef]
  13. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010). [CrossRef]
  14. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010). [CrossRef]
  15. N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, and K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave mixing-based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett.24(4), 276–278 (2012). [CrossRef]
  16. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express18(3), 1904–1908 (2010). [CrossRef] [PubMed]
  17. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett.36(7), 1263–1265 (2011). [CrossRef] [PubMed]
  18. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36(22), 4401–4403 (2011). [CrossRef] [PubMed]
  19. B. Kuyken, X. Liu, and R. M. Osgood, Jr., Y. vlasov, G. Roelkens, R. Baets, and W. M. J. Green, “Frequency conversion of mid-infrared optical signals into the telecom band using nonlinear silicon nanophotonic wires,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThU2014.
  20. S. Zlatanovic, J. S. Park, F. Gholami, J. M. C. Boggio, S. Moro, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides pumped by silica-fiber-based source,” IEEE J. Sel. Top. Quantum Electron. (accepted).
  21. X. P. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express19(8), 7778–7789 (2011). [CrossRef] [PubMed]
  22. B. Kuyken, X. P. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011). [CrossRef] [PubMed]
  23. B. Kuyken, X. Liu, R. M. Osgood, Jr., R. Baets, G. Roelkens, and W. M. J. Green, “Widely tunable silicon mid-infrared optical parametric oscillator,” in Group IV Photonics, United Kingdom (2011).
  24. E. K. Tien, Y. W. Huang, S. M. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010). [CrossRef] [PubMed]
  25. G. P. Agrawal, Nonlinear fiber optics, 4th ed., Quantum electronics–principles and applications (Elsevier / Academic Press, 2007).
  26. J. I. Dadap, N. C. Panoiu, X. G. Chen, I. W. Hsieh, X. P. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. N. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood., “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express16(2), 1280–1299 (2008). [CrossRef] [PubMed]
  27. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1(1), 162–235 (2009). [CrossRef]
  28. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006). [CrossRef] [PubMed]
  29. X. G. Chen, N. C. Panoiu, and R. M. Osgood., “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron.42(2), 160–170 (2006). [CrossRef]
  30. G. R. N. Satyan and A. Yariv, “Chirp multiplication by four wave mixing for wideband swept-frequency sources for high resolution imaging,” J. Lightwave Technol.28(14), 2077–2083 (2010). [CrossRef]
  31. J. Kim, O. Boyraz, J. H. Lim, and M. N. Islam, “Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: theory and experiment,” J. Lightwave Technol.19(2), 247–251 (2001). [CrossRef]
  32. K. Kikuchi, C. Lorattanasane, F. Futami, and S. Kaneko, “Observation of quasi-phase-matched four-wave-mixing assisted by periodic power variation in a long-distance optical amplifier chain,” IEEE Photon. Technol. Lett.7(11), 1378–1380 (1995). [CrossRef]
  33. J. B. Driscoll, R. R. Grote, X. P. Liu, J. I. Dadap, N. C. Panoiu, and R. M. Osgood., “Directionally anisotropic Si nanowires: on-chip nonlinear grating devices in uniform waveguides,” Opt. Lett.36(8), 1416–1418 (2011). [CrossRef] [PubMed]
  34. N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, and H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron.17(4), 1078–1091 (2011). [CrossRef]
  35. J. B. Driscoll, R. R. Grote, J. I. Dadap, N. C. Panoiu, and J. R. M. Osgood, Jr., “Quasi-phase-matching four-wave-mixing via width-modulated silicon nanowire waveguides,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FThN4. (2011).
  36. Y. Huang, E.-K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, and O. Boyraz, “Quasi phase matching in SOI and SOS based parametric wavelength converters,” Proc. SPIE8120, 81200F, 81200F-7 (2011). [CrossRef]
  37. N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett.94(9), 091116 (2009). [CrossRef]
  38. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011). [CrossRef] [PubMed]
  39. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  40. J. B. Driscoll, X. Liu, R. Grote, J. I. Dadap, N. C. Panoiu, and R. M. Osgood, Jr., “Enhancing FWM conversion efficiency in a silicon waveguide by exploiting phase-matching via a pump-induced nonlinear grating,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper IMB2013.
  41. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  42. J. B. Driscoll, X. P. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express17(4), 2797–2804 (2009). [CrossRef] [PubMed]
  43. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley Interscience, 2007).
  44. N. C. Panoiu, J. F. McMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron.16(1), 257–266 (2010). [CrossRef]
  45. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010). [CrossRef] [PubMed]
  46. R. R. Grote, J. B. Driscoll, C. G. Biris, N. C. Panoiu, and R. M. Osgood., “Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities,” Opt. Express19(27), 26406–26415 (2011). [CrossRef] [PubMed]
  47. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett.34(9), 1357–1359 (2009). [CrossRef] [PubMed]
  48. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett.32(5), 533–535 (2007). [CrossRef] [PubMed]
  49. G. M. Jiang, R. Y. Chen, Q. A. Zhou, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–8 (2011).
  50. R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited