OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9284–9295

Performance improvement of on-off-keying free‑space optical transmission systems by a co‑propagating reference continuous wave light

Zixiong Wang, Wen-De Zhong, Changyuan Yu, and Songnian Fu  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 9284-9295 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we analytically investigate an optical signal detection scheme to mitigate the scintillation effect with the assistance of a co-propagating reference continuous wave (CW) light. Using the correlation coefficient between the intensities of the data light and the reference CW light, we mathematically derive their joint intensity distributions under two widely used atmospheric turbulence channel models, namely log-normal distributed channel model and Gamma-Gamma distributed channel model, respectively. We also carry out the Monte-Carlo (MC) simulation and show that theoretical results agree with simulation results well. Our analytical results reveal that when the correlation coefficient is 0.99, the power reductions to achieve BER of 10−3 are 12.3 dB and 20.4 dB under moderate and strong atmospheric turbulence conditions (i.e., Rytov variances of 1.0 and 4.0), respectively. In addition, the feasibility of the scheme applied to wavelength-division-multiplexed (WDM) free-space-optical (FSO) transmission systems is also investigated, where only a single reference CW light could be used to mitigate the scintillation effects on all WDM channels.

© 2012 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: February 10, 2012
Revised Manuscript: March 23, 2012
Manuscript Accepted: March 26, 2012
Published: April 6, 2012

Zixiong Wang, Wen-De Zhong, Changyuan Yu, and Songnian Fu, "Performance improvement of on-off-keying free‑space optical transmission systems by a co‑propagating reference continuous wave light," Opt. Express 20, 9284-9295 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels,” Opt. Express19(14), 13480–13496 (2011). [CrossRef] [PubMed]
  2. X. Liu, “Free-space optics optimization models for building sway and atmospheric interference using variable wavelength,” IEEE Trans. Commun.57(2), 492–498 (2009). [CrossRef]
  3. N. Letzepis, I. Holland, and W. Cowley, “The Gaussian free space optical MIMO channel with Q-ary pulse position modulation,” IEEE Trans. Wirel. Comm.7(5), 1744–1753 (2008). [CrossRef]
  4. N. Cvijetc, D. Qian, J. Yu, Y.-K. Huang, and T. Wang, “Polarization-multiplexed optical wireless transmission with coherent detection,” J. Lightwave Technol.28(8), 1218–1227 (2010). [CrossRef]
  5. N. Letzepis and A. G. i Fabregas, “Outage probability of the Gaussian MIMO free-space optical channel with PPM,” IEEE Trans. Commun.57(12), 3682–3690 (2009). [CrossRef]
  6. A. Jurado-Navas, A. Garcia-Zambrana, and A. Puerta-Notario, “Efficient channel model for free space optical communications,” in IEEE Mediterranean Electrotechnical Conference, 2006. MELECON 2006 (IEEE, 2006), pp. 631–634.
  7. I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006). [CrossRef]
  8. X. Zhao, Y. Yao, Y. Sun, and C. Liu, “Circle polarization shift keying with directed detection for free-space optical communication,” J. Opt. Commun. Netw.1(4), 307–312 (2009). [CrossRef]
  9. W. Gappmair and M. Flohberger, “Error performance of coded FSO links in turbulent atmosphere modeled by Gamma-Gamma distribution,” IEEE Trans. Wirel. Comm.8(5), 2209–2213 (2009). [CrossRef]
  10. K. J. Grant, K. A. Corbett, B. A. Clare, J. E. Davies, B. D. Nener, and A. Boettcher-Hunt, “Dual wavelength free space optical communications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuG3.
  11. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
  12. T. Wang and J. W. Strohbehn, “Perturbed log-normal distribution of irradiance fluctuations,” J. Opt. Soc. Am.64(7), 994–999 (1974). [CrossRef]
  13. H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun.3(8), 1402–1409 (2009). [CrossRef]
  14. C. H. Kwok, R. V. Penty, and I. H. White, “Link reliability improvement for optical wireless communication systems with temporal-domain diversity reception,” IEEE Photon. Technol. Lett.20(9), 700–702 (2008). [CrossRef]
  15. W. O. Popoola, Z. Ghassemlooy, J. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron.2(1), 16–23 (2008). [CrossRef]
  16. G. R. Osche, Optical Detection Theory for Laser Applications (Wiley, 2002).
  17. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulence media,” Opt. Eng.40(8), 1554–1562 (2001). [CrossRef]
  18. T. D. Pham, A. Bekkali, K. Kazaura, K. Wakamori, and M. Matsumoto, “A universal platform for ubiquitous wireless communications using radio over FSO system,” J. Lightwave Technol.28(16), 2258–2267 (2010). [CrossRef]
  19. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 2002).
  20. C. H. Edwards and D. E. Penny, Multivariable Calculus with Matrices (Prentice Hall, 2002).
  21. J. L. Devore, Probability Statistics for Engineering and the Sciences (Brooks/Cole, 2008).
  22. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010). [CrossRef]
  23. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley Inter-Science, 2002).
  24. J. G. Proakis, Digital Communications (McGraw-Hill, 2008).
  25. D. K. Borah and D. G. Voelz, “Pointing error effects on free-space optical communication links in the presence of atmospheric turbulence,” J. Lightwave Technol.27(18), 3965–3973 (2009). [CrossRef]
  26. J. Li, J. Q. Liu, and D. P. Taylor, “Optical communications using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun.55(8), 1598–1606 (2007). [CrossRef]
  27. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun.50(8), 1293–1300 (2002). [CrossRef]
  28. N. Cvijetic, D. Qian, and T. Wang, “10Gb/s free-space optical transmission using OFDM,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThD2.
  29. S. S. Muhammad, B. Flecker, E. Leitgeb, and M. Gebhart, “Characterization of fog attenuation in terrestrial free space optical links,” Opt. Eng.46(6), 066001 (2007). [CrossRef]
  30. A. Abushagur, F. M. Abbou, M. Abdullah, and N. Misran, “Performance analysis of a free-space terrestrial optical system in the presence of absorption, scattering, and pointing error,” Opt. Eng.50(7), 075007 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited