OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9312–9321

Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver

Hidetaka Nishi, Tai Tsuchizawa, Rai Kou, Hiroyuki Shinojima, Takashi Yamada, Hideaki Kimura, Yasuhiko Ishikawa, Kazumi Wada, and Koji Yamada  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 9312-9321 (2012)
http://dx.doi.org/10.1364/OE.20.009312


View Full Text Article

Enhanced HTML    Acrobat PDF (940 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

On the silicon (Si) photonic platform, we monolithically integrated a silica-based arrayed-waveguide grating (AWG) and germanium (Ge) photodiodes (PDs) using low-temperature fabrication technology. We confirmed demultiplexing by the AWG, optical-electrical signal conversion by Ge PDs, and high-speed signal detection at all channels. In addition, we mounted a multichannel transimpedance amplifier/limiting amplifier (TIA/LA) circuit on the fabricated AWG-PD device using flip-chip bonding technology. The results show the promising potential of our Si photonic platform as a photonics-electronics convergence.

© 2012 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(250.3140) Optoelectronics : Integrated optoelectronic circuits

ToC Category:
Integrated Optics

History
Original Manuscript: February 21, 2012
Revised Manuscript: March 25, 2012
Manuscript Accepted: March 27, 2012
Published: April 6, 2012

Citation
Hidetaka Nishi, Tai Tsuchizawa, Rai Kou, Hiroyuki Shinojima, Takashi Yamada, Hideaki Kimura, Yasuhiko Ishikawa, Kazumi Wada, and Koji Yamada, "Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver," Opt. Express 20, 9312-9321 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-8-9312


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Lockwood and L. Pavesi, Silicon Photonics II (Springer-Verlag, Berlin2011). [CrossRef]
  2. G. Jacobsen and P. Wildhagen, “A general and rigorous WDM receiver model targeting 10–40-Gb/s channel bit rates,” J. Lightwave Technol.19, 966–976 (2001). [CrossRef]
  3. A. Bogoni, “Photonics for solving unbundling in next-generation WDM-PON,” IEEE J. Sel. Top. Quantum Electron.17, 472–479 (2011). [CrossRef]
  4. F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. Schneider, M. Reffle, T. Butrie, J. Rahn, M. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H. Tsai, J. Bostak, A. Dentai, K. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. Thomson, S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011). [CrossRef]
  5. H. Kimura and K. Kumozaki, “A mixed rate MUX/DEMUX technique with highly efficient use of wavelength for WDM/TDM-based future optical access systems,” in IEEE Lasers and Electro-Optics Society (LEOS, 2009), Paper WU4.
  6. J. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON system,” IEEE J. Sel. Top. Quantum Electron.16, 1290–1297 (2010). [CrossRef]
  7. P. Iannone and K. Reichmann, “Optical access beyond 10Gb/s PON,” in 36th European Conference and Exhibition on Optical Communication (ECOC, 2010), Tu.3.B.1.
  8. T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron.6, 38–45 (2000). [CrossRef]
  9. Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express18, 5106–5113 (2010). [CrossRef] [PubMed]
  10. D. Feng, W. Qian, H. Liang, N. Feng, S. Liao, C. Kung, J. Fong, Y. Liu, R. Shafiiha, D. Lee, B. Luff, and M. Asghari, “Terabit/s single chip WDM receiver on the SOI platform,” in 8th IEEE International Conference on Group IV Photonics (GFP, 2011), FA2.
  11. L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett.23, 869–871 (2011). [CrossRef]
  12. C. Doerr, L. Chen, L. Buhl, and Y. Chen, “Eight-channel SiO2/Si3N4/Si/Ge CWDM receiver,” IEEE Photon. Technol. Lett.23, 1201–1203 (2011). [CrossRef]
  13. C. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol.24, 4763–4789 (2006). [CrossRef]
  14. I. Ogawa, H. Yamazaki, and A. Kaneko, “Highly integrated PLC-type devices with surface-mounted monitor PDs for ROADM,” in Optical Fiber Communication Conference (OFC, 2007), OWO2.
  15. Y. Han, Y. Park, S. Park, J. Shin, C. Lee, H. Ko, Y. Baek, C. Park, Y. Kwon, W. Hwang, K. Oh, and H. Sung, “Fabrication of a TFF-attached WDM-type triplex transceiver module using silica PLC hybrid integration technology,” J. Lightwave Technol.24, 5031–5038 (2006). [CrossRef]
  16. K. Takahata, Y. Muramoto, Y. Akutsu, Y. Akahori, A. Kozen, and Y. Itaya, “10-Gb/s two-channel monolithic photoreceiver array using waveguide p-i-n PD’s and HEMT’s,” IEEE Photon. Technol. Lett.8, 563–565 (1996). [CrossRef]
  17. S. Mino, T. Ohyama, Y. Akahori, T. Hashimoro, Y. Yamada, M. Yanagisawa, and Y. Muramoto, “A 10-Gb/s hybrid-integrated receiver array module using a planar lightwave circuit (PLC) platform including a novel assembly region structure,” J. Lightwave Technol.14, 2475–2482 (1996). [CrossRef]
  18. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17, 516–525 (2011). [CrossRef]
  19. G. Masini, G. Capellini, J. Witzens, and C. Gunn, “A four-channel, 10Gbps monolithic optical receiver in 130nm CMOS with integrated Ge waveguide photodetectors,” in Optical Fiber Communication Conference (OFC, 2007), PDP312.
  20. X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. Cunningham, and A. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express18, 204–211 (2009). [CrossRef]
  21. X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. Moghadam, E. Alon, K. Raj, R. Ho, J. Cunningham, and A. Krishnamoorthy, “Ultra-efficient 10Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express19, 5172–5186 (2011). [CrossRef] [PubMed]
  22. H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, and S. Itabashi, “Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier injection structure,” Appl. Phys. Express3, 102203 (2010). [CrossRef]
  23. S. Park, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, K. Yamada, Y. Ishikawa, K. Wada, and S. Itabashi, “Monolithic integration and synchronous operation of germanium photodetectors and silicon variable optical attenuator,” Opt. Express18, 8412–8421 (2010). [CrossRef] [PubMed]
  24. J. Liu, D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. Danielson, J. Michel, and L. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett.87, 011110 (2005). [CrossRef]
  25. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett.12, 1180–1182 (2000). [CrossRef]
  26. K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, H. Nishi, S. Park, R. Kou, Y. Ishikawa, K. Wada, and S. Itabashi, “Silicon photonic devices and their integration technology,” in Optical Fiber Communication Conference (OFC, 2011), OWQ6.
  27. R. Nagarajan, M. Kato, S. Hurtt, A. Dentai, J. Pleumeekers, P. Evans, M. Missey, R. Muthia, A. Chen, D. Lambert, P. Chavarkar, A. Mathur, J. Bäck, S. Murthy, R. Salvatore, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Monolithic, 10 and 40 channel InP Receiver photonic integrated circits with on-chip amplification,” in Optical Fiber Communication Conference (OFC, 2007), PDP32.
  28. M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, and Y. Yoshikuni, “Packaged polarization-insensitive WDM monitor with low loss (7.3 dB) and wide tuning range (4.5 nm),” IEEE Photon. Technol. Lett.10, 1614–1616 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited