OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 8 — Apr. 9, 2012
  • pp: 9322–9327

High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter

X. Buet, E. Daran, D. Belharet, F. Lozes-Dupuy, A. Monmayrant, and O. Gauthier-Lafaye  »View Author Affiliations

Optics Express, Vol. 20, Issue 8, pp. 9322-9327 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2667 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Guided mode resonance filters (GMRFs) are a promising new generation of reflective narrow band filters, that combine structural simplicity with high efficiency. However their intrinsic poor angular tolerance and huge area limit their use in real life applications. Cavity-resonator-integrated guided-mode resonance filters (CRIGFs) are a new class of reflective narrow band filters. They offer in theory narrow-band high-reflectivity with a much smaller footprint than GMRF. Here we demonstrate that for tightly focused incident beams adapted to the CRIGF size, we can obtain simultaneously high spectral selecitivity, high reflectivity, high angular acceptance with large alignment tolerances. We demonstrate experimentally reflectivity above 74%, angular acceptance greater than ±4.2° for a narrow-band (1.4 nm wide at 847 nm) CRIGF.

© 2012 OSA

OCIS Codes
(230.1950) Optical devices : Diffraction gratings
(050.5298) Diffraction and gratings : Photonic crystals
(050.6624) Diffraction and gratings : Subwavelength structures
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: February 24, 2012
Revised Manuscript: March 30, 2012
Manuscript Accepted: March 30, 2012
Published: April 6, 2012

X. Buet, E. Daran, D. Belharet, F. Lozes-Dupuy, A. Monmayrant, and O. Gauthier-Lafaye, "High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter," Opt. Express 20, 9322-9327 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993). [CrossRef] [PubMed]
  2. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997). [CrossRef]
  3. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986). [CrossRef]
  4. J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005). [CrossRef]
  5. S. Block, E. Gamet, and F. Pigeon, “Semiconductor laser with external resonant grating mirror,” IEEE J. Quantum Electron. 41, 1049–1053 (2005). [CrossRef]
  6. E. Bonnet, A. Cachard, A. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow-band grating filter at the focus of a free-space beam,” Proc. SPIE 5450, 217–222 (2004). [CrossRef]
  7. A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005). [CrossRef]
  8. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998). [CrossRef]
  9. A.-L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrow-band, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett. 32, 2269–2271 (2007). [CrossRef] [PubMed]
  10. A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan, Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” J. Opt. Soc. Am. A 27, 1535–1540 (2010). [CrossRef]
  11. K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express 20, 1444–1449 (2012). [CrossRef] [PubMed]
  12. J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of Guided-Mode Resonance Filter by cavity resonator integration,” Appl. Phys. Express 5, 022201 (2012). [CrossRef]
  13. Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16, 17282–17287 (2008). [CrossRef] [PubMed]
  14. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Com. 181, 687–702 (2010). [CrossRef]
  15. S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited