OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10042–10058

Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations

Michael Kahnert, Timo Nousiainen, Hannakaisa Lindqvist, and Martin Ebert  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 10042-10058 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (905 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light scattering by light absorbing carbon (LAC) aggregates encapsulated into sulfate shells is computed by use of the discrete dipole method. Computations are performed for a UV, visible, and IR wavelength, different particle sizes, and volume fractions. Reference computations are compared to three classes of simplified model particles that have been proposed for climate modeling purposes. Neither model matches the reference results sufficiently well. Remarkably, more realistic core-shell geometries fall behind homogeneous mixture models. An extended model based on a core-shell-shell geometry is proposed and tested. Good agreement is found for total optical cross sections and the asymmetry parameter.

© 2012 OSA

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(290.1350) Scattering : Backscattering
(290.5850) Scattering : Scattering, particles
(290.5825) Scattering : Scattering theory

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: February 22, 2012
Revised Manuscript: April 12, 2012
Manuscript Accepted: April 12, 2012
Published: April 18, 2012

Michael Kahnert, Timo Nousiainen, Hannakaisa Lindqvist, and Martin Ebert, "Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations," Opt. Express 20, 10042-10058 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature409, 695–697 (2001). [CrossRef] [PubMed]
  2. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing.” in Climate Change 2007: The Physical Science Basis, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds. (Cambridge University Press, 2007), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
  3. V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nat. Geosci.1, 221–227 (2008). [CrossRef]
  4. K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res.112, D14202 (2007). [CrossRef]
  5. A. R. Jones, “Light scattering in combustion,” in Light Scattering Reviews, A. Kokhanovsky, ed., (Springer, 2006). [CrossRef]
  6. M. Kahnert, “Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model,” Atmos. Chem. Phys.10, 1403–1416 (2010). [CrossRef]
  7. T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol.40, 27–67 (2006). [CrossRef]
  8. M. Kahnert, “On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols,” Aerosol Sci. Technol.44, 453–460 (2010). [CrossRef]
  9. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A13, 2266–2278 (1996). [CrossRef]
  10. M. Kahnert, “Numerically exact computation of the optical properties of light absorbing carbon aggregates for wavelength of 200 nm V 12.2 μm,” Atmos. Chem. Phys.10, 8319–8329 (2010). [CrossRef]
  11. N. Riemer, H. Vogel, and B. Vogel, “Soot aging time scales in polluted regions during day and night,” Atmos. Chem. Phys.4, 1885–1893 (2004). [CrossRef]
  12. S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19 (2007). [CrossRef]
  13. B. Croft, U. Lohmann, and K. von Salzen, “Black carbon aging in the Canadian Centre for climate modelling and analysis atmospheric general circulation model,” Atmos. Chem. Phys.5, 1383–1419 (2005). [CrossRef]
  14. R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: global implications,” J. Geophys. Res.110, D11205 (2005). [CrossRef]
  15. J. Wilson, C. Cuvelier, and F. Raes, “A modeling study of global mixed aerosol fields,” J. Geophys. Res.106, 34081–34108 (2001). [CrossRef]
  16. K. Adachi and P. R. Buseck, “Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City,” Atmos. Chem. Phys.8, 6469–6481 (2008). [CrossRef]
  17. M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003). [CrossRef]
  18. J. Hallett, J. G. Hudson, and C. F. Rogers, “Characterization of combustion aerosols for haze and cloud formation,” Aerosol Sci. Technol.10, 70–83 (1989). [CrossRef]
  19. I. Colbeck, L. Appleby, E. J. Hardman, and R. M. Harrison, “The optical properties and morphology of cloud-processed carbonaceous smoke,” J. Aerosol Sci.21, 527–538 (1990). [CrossRef]
  20. G. Ramachandran and P. C. Reist, “Characterization of morphological changes in agglomerates subject to condensation and evaporation using multiple fractal dimensions,” Aerosol Sci. Technol.23, 431–442 (1995). [CrossRef]
  21. S. Nyeki and I. Colbeck, “Fractal dimension analysis of single, in-situ, restructured carbonaceous aggregates,” Aerosol Sci. Technol.23, 109–120 (1995). [CrossRef]
  22. C. M. Sorensen and G. M. Roberts, “The prefactor of fractal aggregates,” J. Colloid. Interface Sci.186, 447–452 (1997). [CrossRef] [PubMed]
  23. L. H. van Poppel, H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck, “Electron tomography of nanoparticle clusters: Implications for atmospheric lifetimes and radiative forcing of soot,” Geophys. Res. Lett.32, L24811 (2005). [CrossRef]
  24. P. Chýlek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, 2000), pp. 274–308.
  25. G. Videen and P. Chýlek, “Scattering by a composite sphere with an absorbing inclusion and effective medium approximations,” Opt. Commun.158, 1–6 (1998). [CrossRef]
  26. M. Z. Jacobson, “A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols,” Geophys. Res. Lett27, 217–220 (2000). [CrossRef]
  27. T. C. Bond, G. Habib, and R. W. Bergstrom, “Limitations in the enhancement of visible light absorption due to mixing state,” J. Geophys. Res.111, D20211 (2006). [CrossRef]
  28. M. Kocifaj and G. Videen, “Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches,” J. Quant. Spectrosc. Radiat. Transfer109, 1404–1416 (2008). [CrossRef]
  29. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres III. spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A12, 893–904 (1995). [CrossRef]
  30. K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res.104, 15941–15954 (1999). [CrossRef]
  31. K. Adachi, S. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res.115, D15206 (2010). [CrossRef]
  32. A. Worringen, M. Ebert, T. Trautmann, S. Weinbruch, and G. Helas, “Optical properties of internally mixed ammonium sulfate and soot particles—a study of individual aerosol particles and ambient aerosol populations,” Appl. Opt.47, 3835–3845 (2008). [CrossRef] [PubMed]
  33. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973). [CrossRef]
  34. L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” J. Quant. Spectrosc. Radiat. Transfer106, 262–273 (2007). [CrossRef]
  35. H. Chang and T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. Lond. Ser. A430, 577–591 (1990). [CrossRef]
  36. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Met. Soc.79, 831–844 (1998). [CrossRef]
  37. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994). [CrossRef]
  38. T. Rother, Electromagnetic Wave Scattering on Nonspherical Particles (Springer, 2009). [CrossRef]
  39. M. Kahnert and T. Rother, “Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach,” Opt. Express19, 11138–11151 (2011). [CrossRef] [PubMed]
  40. D. Gutkowicz-Krusin and B. T. Draine, Propagation of electromagnetic waves on a rectangular lattice of polarizable points, Tech. rep., http://arxiv.org/abs/astro-ph/0403082 (2004).
  41. E. Zubko, K. Muinonen, Y. Shkuratov, G. Videen, and T. Nousiainen, “Scattering of light by roughened Gaussian random particles,” J. Quant. Spectrosc. Radiat. Transfer106, 604–615 (2007). [CrossRef]
  42. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).
  43. O. B. Toon and T. P. Ackermann, “Algorithms for the calculation of scattering by stratified spheres,” Appl. Opt.20, 3657–3660 (1981). [CrossRef] [PubMed]
  44. Z. S. Wu and Y. P. Wang, “Electromagnetic scattering for multilayered sphere: recursive algorithms,” Radio Sci.26, 1393–1401 (1991). [CrossRef]
  45. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Ser. A203, 385–420 (1904). [CrossRef]
  46. D. A. G. Bruggemann, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. 1. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys.24, 636–664 (1935). [CrossRef]
  47. M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys.11, 11745–11759 (2011). [CrossRef]
  48. M. Kocifaj, F. Kundracík, and G. Videen, “Optical properties of single mixed-phase aerosol particles,” J. Quant. Spectrosc. Radiat. Transfer109, 2108–2123 (2008). [CrossRef]
  49. M. Schnaiter, C. Linke, O. Moehler, K.-H. Naumann, H. Saathoff, R. Wagner, U. Schurath, and B. Wehner, “Absorption amplification of black carbon internally mixed with secondary organic aerosol,” J. Geophys. Res.110, D19204 (2005). [CrossRef]
  50. M. Kahnert, “Irreducible representations of finite groups in the T matrix formulation of the electromagnetic scattering problem,” J. Opt. Soc. Am. A22, 1187–1199 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited