OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10071–10076

Slowing down terahertz waves with tunable group velocities in a broad frequency range by surface magneto plasmons

Bin Hu, Qi Jie Wang, and Ying Zhang  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10071-10076 (2012)
http://dx.doi.org/10.1364/OE.20.010071


View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper proposes one broadly tunable terahertz (THz) slow-light system in a semiconductor-insulator-semiconductor structure. Subject to an external magnetic field, the structure supports in total two surface magneto plasmons (SMPs) bands above and below the surface plasma frequency, respectively. Both the SMPs bands can be tuned by the external magnetic field. Numerical studies show that leveraging on the two tunable bands, the frequency and the group velocity of the slowed-down THz wave can be widely tuned from 0.3 THz to 10 THz and from 1 c to 10−6c, respectively, when the external magnetic field increases up to 6 Tesla. The proposed method based on the two SMPs bands can be widely used for many other plasmonic devices.

© 2012 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.3810) Optical devices : Magneto-optic systems
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 6, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 5, 2012
Published: April 18, 2012

Citation
Bin Hu, Qi Jie Wang, and Ying Zhang, "Slowing down terahertz waves with tunable group velocities in a broad frequency range by surface magneto plasmons," Opt. Express 20, 10071-10076 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10071


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008). [CrossRef]
  2. R. Boyd, “Slow light now and then,” Nat. Photonics2(8), 454–455 (2008). [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999). [CrossRef]
  4. L. V. Hau, “Optical information processing in Bose-Einstein condensates,” Nat. Photonics2(8), 451–453 (2008). [CrossRef]
  5. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics4(11), 776–779 (2010). [CrossRef]
  6. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008). [CrossRef] [PubMed]
  7. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004). [CrossRef] [PubMed]
  8. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett.93(23), 233903 (2004). [CrossRef] [PubMed]
  9. C. Huang and C. Jiang, “Nonreciprocal photonic crystal delay waveguide,” J. Opt. Soc. Am. B26(10), 1954–1958 (2009). [CrossRef]
  10. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007). [CrossRef]
  11. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett.95(6), 063901 (2005). [CrossRef] [PubMed]
  12. E. Fitrakis, T. Kamalakis, and T. Sphicopoulos, “Slow light in insulator-metal- insulator plasmonic waveguides,” J. Opt. Soc. Am. B28(9), 2159–2164 (2011). [CrossRef]
  13. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  14. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys.106(10), 103715 (2009). [CrossRef]
  15. J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68(20), 201306 (2003). [CrossRef]
  16. B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb,” Opt. Express17(12), 10223–10230 (2009). [CrossRef] [PubMed]
  17. J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express13(3), 847–859 (2005). [CrossRef] [PubMed]
  18. B. Hu, B. Gu, B. Dong, and Y. Zhang, “Optical transmission resonances tuned by external static magnetic field in an n-doped semiconductor grating with subwavelength slits,” Opt. Commun.281(24), 6120–6123 (2008). [CrossRef]
  19. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2.
  20. J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett.28(22), 1455–1458 (1972). [CrossRef]
  21. E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970). [CrossRef]
  22. B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics (published on line, 2011). http://www.springerlink.com/content/p531745636224004/
  23. M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter36(11), 5960–5967 (1987). [CrossRef] [PubMed]
  24. J. Rivas, A. Benet, J. Niehusmann, P. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B71(15), 155110 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited