OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10083–10094

Coupling of spin and angular momentum of light in plasmonic vortex

Seong-Woo Cho, Junghyun Park, Seung-Yeol Lee, Hwi Kim, and Byoungho Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 10083-10094 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1526 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present that two distinct optical properties of light, the spin angular momentum (SAM) and the orbital angular momentum (OAM), can be coupled in the plasmonic vortex. If a plasmonic vortex lens (PVL) is illuminated by the helical vector beam (HVB) with the SAM and OAM, then those distinct angular momenta contribute to the generation of the plasmonic vortex together. The analytical model reveals that the total topological charge of the generated plasmonic vortex is given by a linear summation of those of the SAM and OAM, as well as the geometric charge of the PVL. The generation of the plasmonic vortex and the manipulation of the fractional topological charge are also presented.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.4865) Diffraction and gratings : Optical vortices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: March 12, 2012
Revised Manuscript: April 7, 2012
Manuscript Accepted: April 10, 2012
Published: April 18, 2012

Seong-Woo Cho, Junghyun Park, Seung-Yeol Lee, Hwi Kim, and Byoungho Lee, "Coupling of spin and angular momentum of light in plasmonic vortex," Opt. Express 20, 10083-10094 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  4. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003). [CrossRef] [PubMed]
  5. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007). [CrossRef]
  6. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  7. H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett.5(11), 2144–2148 (2005). [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001). [CrossRef] [PubMed]
  9. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003). [CrossRef] [PubMed]
  10. H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express16(12), 8969–8980 (2008). [CrossRef] [PubMed]
  11. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  12. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett.5(6), 1123–1127 (2005). [CrossRef] [PubMed]
  13. B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010). [CrossRef]
  14. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett.101(3), 030404 (2008). [CrossRef] [PubMed]
  15. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008). [CrossRef] [PubMed]
  16. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009). [CrossRef] [PubMed]
  17. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010). [CrossRef] [PubMed]
  18. E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures,” New J. Phys.12(2), 023027 (2010). [CrossRef]
  19. V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt.13(6), 064002 (2011). [CrossRef]
  20. P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett.92(11), 111108 (2008). [CrossRef]
  21. P. S. Tan, G. H. Yuan, Q. Wang, N. Zhang, D. H. Zhang, and X.-C. Yuan, “Phase singularity of surface plasmon polaritons generated by optical vortices,” Opt. Lett.36(16), 3287–3289 (2011). [CrossRef] [PubMed]
  22. S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express19(22), 22305–22315 (2011). [CrossRef] [PubMed]
  23. J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011). [CrossRef] [PubMed]
  24. S.-Y. Lee, J. Park, H. Kim, S.-W. Cho, M. Kang, and B. Lee, “Controlling the state of surface plasmon vortex by changing the topoligical charge and polarization state,” Proc. SPIE7757, 7757G (2010).
  25. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Interscience, 2007).
  26. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett.27(5), 285–287 (2002). [CrossRef] [PubMed]
  27. H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A24(8), 2313–2327 (2007). [CrossRef] [PubMed]
  28. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett.34(20), 3047–3049 (2009). [CrossRef] [PubMed]
  29. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys.6, 71 (2004). [CrossRef]
  30. S. H. Tao, W. M. Lee, and X.-C. Yuan, “Dynamic optical manipulation with a higher-order fractional bessel beam generated from a spatial light modulator,” Opt. Lett.28(20), 1867–1869 (2003). [CrossRef] [PubMed]
  31. G. M. Lerman, L. Stern, and U. Levy, “Generation and tight focusing of hybridly polarized vector beams,” Opt. Express18(26), 27650–27657 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (606 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited