OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10095–10099

Chalcogenide optical parametric oscillator

Raja Ahmad and Martin Rochette  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 10095-10099 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (985 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the first optical parametric oscillator (OPO) based on chalcogenide glass. The parametric gain medium is an As2Se3 chalcogenide microwire coated with a layer of polymer. The doubly-resonant OPO oscillates simultaneously at a Stokes and an anti Stokes wavelength shift of >50 nm from the pump wavelength that lies at λP = 1,552 nm. The oscillator has a peak power threshold of 21.6 dBm and a conversion efficiency of >19%. This OPO experiment provides an additional application of the chalcogenide microwire technology; and considering the transparency of As2Se3 glass extending far in the mid-infrared (mid-IR) wavelengths, the device holds promise for realizing mid-IR OPOs utilizing existing optical sources in the telecommunications wavelength region.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Nonlinear Optics

Original Manuscript: March 14, 2012
Revised Manuscript: April 9, 2012
Manuscript Accepted: April 10, 2012
Published: April 18, 2012

Raja Ahmad and Martin Rochette, "Chalcogenide optical parametric oscillator," Opt. Express 20, 10095-10099 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B12(11), 2102–2116 (1995). [CrossRef]
  2. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron.33(10), 1663–1672 (1997). [CrossRef]
  3. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics1(8), 459–462 (2007). [CrossRef]
  4. M. Ghotbi, A. Esteban-Martin, and M. Ebrahim-Zadeh, “BiB3O6 femtosecond optical parametric oscillator,” Opt. Lett.31(21), 3128–3130 (2006). [CrossRef] [PubMed]
  5. G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, “1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32(17), 2623–2625 (2007). [CrossRef] [PubMed]
  6. K. O. Hill, B. S. Kawasaki, Y. Fujii, and D. C. Johnson, “Efficient sequence‐frequency generation in a parametric fiber‐optic oscillator,” Appl. Phys. Lett.36(11), 888 (1980). [CrossRef]
  7. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett.27(19), 1675–1677 (2002). [CrossRef] [PubMed]
  8. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett.30(10), 1234–1236 (2005). [CrossRef] [PubMed]
  9. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Widely tunable silicon mid-infrared optical parametric oscillator,” in Proc. IEEE Group IV Photonics, 8th Int. Conf., London, U.K., 338–340 (2011).
  10. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93(8), 083904 (2004). [CrossRef] [PubMed]
  11. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF(2) resonator,” Phys. Rev. Lett.93(24), 243905 (2004). [CrossRef] [PubMed]
  12. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  13. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  14. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave mixing parametric oscillations in dispersion-compensated high-Q optical microspheres,” Phys. Rev. A76(4), 043837 (2007). [CrossRef]
  15. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010). [CrossRef]
  16. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002). [CrossRef] [PubMed]
  17. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Third-order optical nonlinearities and their ultrafast response in Bi2O3–B2O3–SiO2 glasses,” J. Opt. Soc. Am. B16(11), 1904–1908 (1999). [CrossRef]
  18. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett.84(6), 900–902 (2004). [CrossRef]
  19. C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express18(12), 12391–12398 (2010). [CrossRef] [PubMed]
  20. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011). [CrossRef]
  21. R. Ahmad and M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires,” Opt. Express. 20, 9572–9580 (2012). [PubMed]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, New York, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited