OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10122–10127

Enhanced luminescence via energy transfer from Ag+ to RE ions (Dy3+, Sm3+, Tb3+) in glasses

JingJing Li, RongFei Wei, XueYun Liu, and Hai Guo  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10122-10127 (2012)
http://dx.doi.org/10.1364/OE.20.010122


View Full Text Article

Enhanced HTML    Acrobat PDF (925 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Oxyfluoride glasses containing Ag species and rare earth (RE) ions (Dy3+, Sm3+, Tb3+) were prepared by melt-quenching technique. The type of luminescent species of novel excitation band (230-300 nm peaked at 255 nm) and emission band (300-600 nm peaked at 350 nm) were investigated by absorption, excitation, emission spectra, as well as decay lifetime measurements and can be ascribed to isolated Ag+ ions. Owing to energy transfer from Ag+ to RE ions, significant enhancements of RE ions emission (76 times for Sm3+, 41 times for Dy3+) were observed for non-resonant UV excitation (255 nm). Our research may extend the understanding of interactions between RE ions and Ag species.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Materials

History
Original Manuscript: February 17, 2012
Revised Manuscript: April 1, 2012
Manuscript Accepted: April 9, 2012
Published: April 18, 2012

Citation
JingJing Li, RongFei Wei, XueYun Liu, and Hai Guo, "Enhanced luminescence via energy transfer from Ag+ to RE ions (Dy3+, Sm3+, Tb3+) in glasses," Opt. Express 20, 10122-10127 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Blasse and B. C. Grabmaier, Luminescent Marerials (Springer, 1994).
  2. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater.10(12), 968–973 (2011). [PubMed]
  3. G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21, 3156–3161 (2011).
  4. D. Chen, Y. Yu, F. Huang, A. Yang, and Y. Wang, “Lanthanide activator doped NaYb1-xGdxF4 nanocrystals with tunable down-, up-conversion luminescence and paramagnetic properties,” J. Mater. Chem.21, 6186–6192 (2011).
  5. G. Seeta Rama Raju, J. Yu, J. Park, H. Jung, and B. Moon, “Photoluminescence and cathodoluminescence properties of nanocrystalline Ca2Gd8Si6O26:Sm3+ phosphors,” J. Am. Ceram. Soc.95, 238–242 (2012).
  6. H. Guo, H. Zhang, J. Li, and F. Li, “Blue-white-green tunable luminescence from Ba2Gd2Si4O13:Ce3+,Tb3+ phosphors excited by ultraviolet light,” Opt. Express18(26), 27257–27262 (2010). [PubMed]
  7. R. Wei, H. Zhang, F. Li, and H. Guo, “Blue-White-Green Tunable Luminescence of Ce3+, Tb3+ Co-Doped Sodium Silicate Glasses for White LEDs,” J. Am. Ceram. Soc.95, 34–36 (2012).
  8. O. Malta, P. Santa-Cruz, G. De Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin.33, 261–272 (1985).
  9. L. Naranjo, C. De Araújo, O. Malta, P. Cruz, and L. Kassab, “Enhancement of Pr3+ luminescence in PbO-GeO2 glasses containing silver nanoparticles,” Appl. Phys. Lett.87, 241914 (2005).
  10. T. Hayakawa, S. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett.74, 1513–1515 (1999).
  11. Y. Wu, X. Shen, S. Dai, Y. Xu, F. Chen, C. Lin, T. Xu, and Q. Nie, “Silver Nanoparticles Enhanced Upconversion Luminescence in Er3+/Yb3+ Codoped Bismuth-Germanate Glasses,” J. Phys. Chem. C115, 25040–25045 (2011).
  12. M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater.19, 2045–2052 (2009).
  13. M. Eichelbaum, K. Rademann, A. Hoell, D. M. Tatchev, W. Weigel, R. Stößer, and G. Pacchioni, “Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses,” Nanotechnology19(13), 135701 (2008). [PubMed]
  14. H. Guo, J. Li, F. Li, and H. Zhang, “Origin of white luminescence in Ag-Eu Co-doped oxyfluoride glasses,” J. Electrochem. Soc.158, J165–J168 (2011).
  15. H. Guo, X. Wang, J. Chen, and F. Li, “Ultraviolet light induced white light emission in Ag and Eu3+ co-doped oxyfluoride glasses,” Opt. Express18(18), 18900–18905 (2010). [PubMed]
  16. V. K. Tikhomirov, V. D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters,” Opt. Express18(21), 22032–22040 (2010). [PubMed]
  17. Y. Dai, X. Hu, C. Wang, D. Chen, X. Jiang, C. Zhu, B. Yu, and J. Qiu, “Fluorescent Ag nanoclusters in glass induced by an infrared femtosecond laser,” Chem. Phys. Lett.439, 81–84 (2007).
  18. E. Borsella, G. Battaglin, M. A. García, F. Gonella, P. Mazzoldi, R. Polloni, and A. Quaranta, “Structural incorporation of silver in soda-lime glass by the ion-exchange process: a photoluminescence spectroscopy study,” Appl.Phys. A.71, 125–132 (2000).
  19. S. Paje, M. García, J. Llopis, and M. Villegas, “Optical spectroscopy of silver ion-exchanged As-doped glass,” J. Non-Cryst. Solids318, 239–247 (2003).
  20. A. Meijerink, M. van Heek, and G. Blasse, “Luminescence of Ag+ in crystalline and glassy SrB4O7,” J. Phys. Chem. Solids54, 901–906 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited