OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10163–10169

Mode-evolution-based polarization rotator-splitter design via simple fabrication process

Wangqing Yuan, Keisuke Kojima, Bingnan Wang, Toshiaki Koike-Akino, Kieran Parsons, Satoshi Nishikawa, and Eiji Yagyu  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10163-10169 (2012)
http://dx.doi.org/10.1364/OE.20.010163


View Full Text Article

Enhanced HTML    Acrobat PDF (2090 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A mode-evolution-based polarization rotator-splitter built on InP substrate is proposed by combining a mode converter and an adiabatic asymmetric Y-coupler. The mode converter, consisting of a bi-level taper and a width taper, effectively converts the fundamental TM mode into the second order TE mode without changing the polarization of the fundamental TE mode. The following adiabatic asymmetric Y-coupler splits the fundamental and the second order TE modes and also converts the second order TE mode into the fundamental TE mode. A shallow etched structure is proposed for the width taper to enhance the polarization conversion efficiency. The device has a total length of 1350 µm, a polarization extinction ratio over 25 dB and an insertion loss below 0.5 dB both for TE and TM modes, over the wavelength range from 1528 to 1612 nm covering all C + L band. Because the device is designed based on mode evolution principle, it has a large fabrication tolerance. The insertion loss remains below 1 dB and the polarization extinction ratio remains over 17 dB with respect to a width variation of +/− 0.12 µm at the wavelength of 1570 nm, or +/− 0.08 µm over the entire C + L band.

© 2012 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(130.0130) Integrated optics : Integrated optics
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: February 3, 2012
Revised Manuscript: March 22, 2012
Manuscript Accepted: March 22, 2012
Published: April 18, 2012

Citation
Wangqing Yuan, Keisuke Kojima, Bingnan Wang, Toshiaki Koike-Akino, Kieran Parsons, Satoshi Nishikawa, and Eiji Yagyu, "Mode-evolution-based polarization rotator-splitter design via simple fabrication process," Opt. Express 20, 10163-10169 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10163


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007). [CrossRef]
  2. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25(3), 740–746 (2007). [CrossRef]
  3. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008). [CrossRef] [PubMed]
  4. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007). [CrossRef] [PubMed]
  5. R. Nagarajan, J. Rahn, M. Kato, J. Pleumeekers, D. Lambert, V. Lal, H. S. Tsai, A. Nilsson, A. Dentai, M. Kuntz, R. Malendevich, J. Tang, J. Zhang, T. Butrie, M. Raburn, B. Little, W. Chen, G. Goldfarb, V. Dominic, B. Taylor, M. Reffle, F. Kish, and D. Welch, “10 Channel, 45.6 Gb/s per channel, polarization-multiplexed DQPSK, InP receiver photonic integrated circuit,” J. Lightwave Technol.29(4), 386–395 (2011). [CrossRef]
  6. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett.30(2), 138–140 (2005). [CrossRef] [PubMed]
  7. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett.30(9), 967–969 (2005). [CrossRef] [PubMed]
  8. J. Zhang, M. Yu, G. Lo, and D. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron.16(1), 53–60 (2010). [CrossRef]
  9. L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett.36(4), 469–471 (2011). [CrossRef] [PubMed]
  10. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011). [CrossRef] [PubMed]
  11. K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol.13(10), 2087–2092 (1995). [CrossRef]
  12. K. Mertens, B. Opitz, R. Hovel, K. Heime, and H. J. Schmitt, “First realized polarization converter based on hybrid supermodes,” IEEE Photon. Technol. Lett.10(3), 388–390 (1998). [CrossRef]
  13. W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron.11(1), 32–39 (1975). [CrossRef]
  14. T. A. Ramadan, R. Scarmozzino, and R. M. Osgood., “Adiabatic couplers: design rules and optimization,” J. Lightwave Technol.16(2), 277–283 (1998). [CrossRef]
  15. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27(3), 556–566 (1991). [CrossRef]
  16. T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett.18(5), 709–711 (2006). [CrossRef]
  17. J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007). [CrossRef]
  18. E. M. Garmire and H. Stoll, “Propagation losses in metal-film-substrate optical waveguides,” IEEE J. Quantum Electron.8(10), 763–766 (1972). [CrossRef]
  19. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE4987, 69–82 (2003). [CrossRef]
  20. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. H. van Brug, and P. M. Demeester, “Adiabatic 3-db-coupler on InGaAsP/InP using double masking,” Proc. SPIE2449, 349–354 (1995). [CrossRef]
  21. L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization Splitter/converter in InGaAsP-InP,” IEEE Photon. Technol. Lett.19(17), 1286–1288 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited