OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10218–10228

Toward scatter-free phosphors in white phosphor-converted light-emitting diodes

Hoo Keun Park, Ji Hye Oh, and Young Rag Do  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 10218-10228 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scatter-free phosphors promise to suppress the scattering loss of conventional micro-size powder phosphors in white phosphor-converted light-emitting diodes (pc-LEDs). Large micro-size cube phosphors (~100 μm) are newly designed and prepared as scatter-free phosphors, combining the two scatter-free conditions of particles based on Mie’s scattering theory; the grain size or grain boundary was smaller than 50 nm and the particle size was larger than 30 μm. A careful evaluation of the conversion efficiency and packaging efficiency of the large micro-size cube phosphor-based white pc-LED demonstrated that large micro-size cube phosphors are an outstanding potential candidate for scatter-free phosphors in white pc-LEDs. The luminous efficacy and packaging efficiency of the Y3Al5O12:Ce3+ large micro-size cube phosphor-based pc-LEDs were 123.0 lm/W and 0.87 at 4300 K under 300 mA, which are 17% and 34% higher than those of commercial powder phosphor-based white LEDs (104.8 lm/W and 0.65), respectively. In addition, the introduction of large micro-size cube phosphors can reduce the wide variation in optical properties as a function of both the ambient temperature and applied current compared with those of conventional powder phosphor-based white LEDs.

© 2012 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.3670) Optical devices : Light-emitting diodes
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory

ToC Category:
Optical Devices

Original Manuscript: February 14, 2012
Revised Manuscript: April 12, 2012
Manuscript Accepted: April 16, 2012
Published: April 19, 2012

Hoo Keun Park, Ji Hye Oh, and Young Rag Do, "Toward scatter-free phosphors in white phosphor-converted light-emitting diodes," Opt. Express 20, 10218-10228 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett.64(13), 1687–1689 (1994). [CrossRef]
  2. S. Nakamura, M. Senob, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys.34(Part 2, No. 10B), L1332–L1335 (1995). [CrossRef]
  3. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett.67(13), 1868–1870 (1995). [CrossRef]
  4. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process.64(4), 417–418 (1997). [CrossRef]
  5. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(6), R37–R54 (2011). [CrossRef]
  6. V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater.21(10), 2077–2084 (2009). [CrossRef]
  7. N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A202(6), R60–R62 (2005). [CrossRef]
  8. K. Yamada, Y. Imai, and K. Ishii, “Optical simulation of light source devices composed of blue LEDs and YAG phosphor,” J. Light Vis. Environ.27(2), 70–74 (2003). [CrossRef]
  9. L. Wang, L. Mei, G. He, J. Li, and L. Xu, “Preparation of Ce:YAG glass-ceramics with low SiO2,” J. Am. Ceram. Soc.94(11), 3800–3803 (2011). [CrossRef]
  10. S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top. Quantum Electron.14(5), 1387–1391 (2008). [CrossRef]
  11. S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG glass–ceramic phosphors for white LED (I): development,” Proc. SPIE5941, 594111, 594111-7 (2005). [CrossRef]
  12. S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater.33(5), 688–691 (2011). [CrossRef]
  13. H. K. Park, J. R. Oh, and Y. R. Do, “2D SiNx photonic crystal coated Y3Al5O12:Ce3+ ceramic plate phosphor for high-power white light-emitting diodes,” Opt. Express19(25), 25593–25601 (2011). [CrossRef] [PubMed]
  14. J. W. Kim and Y. J. Kim, “The effects of substrates and deposition parameters on the growing and luminescent properties of Y3Al5O12:Ce thin films,” Opt. Mater.28(6-7), 698–702 (2006). [CrossRef]
  15. W.-H. Chao, R.-J. Wu, and T.-B. Wu, “Structural and luminescent properties of YAG:Ce thin film phosphor,” J. Alloy. Comp.506(1), 98–102 (2010). [CrossRef]
  16. J. Ryszkowska, “Quantitative description of the microstructure of polyurethane nanocomposites with YAG including Tb3+,” Mater. Sci. Eng. B146(1-3), 54–58 (2008). [CrossRef]
  17. M. Nyman, L. E. Shea-Rohwer, J. E. Martin, and P. Provencio, “Nano-YAG:Ce mechanisms of growth and epoxy-encapsulation,” Chem. Mater.21(8), 1536–1542 (2009). [CrossRef]
  18. R. Kasuya, A. Kawano, T. Isobe, H. Kuma, and J. Katano, “Characteristic optical properties of transparent color conversion film prepared from YAG:Ce3+ nanoparticles,” Appl. Phys. Lett.91, 111916 (2007). [CrossRef]
  19. B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc.159(4), J96–J106 (2012). [CrossRef]
  20. Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp.488(2), 638–642 (2009). [CrossRef]
  21. H. Yang, D.-K. Lee, and Y.-S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys.114(2-3), 665–669 (2009). [CrossRef]
  22. S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn.118(2), 128–131 (2010). [CrossRef]
  23. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp.341(1-2), 220–225 (2002). [CrossRef]
  24. T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci.52(5), 1836–1841 (2005). [CrossRef]
  25. J. H. Oh, J. R. Oh, H. K. Park, Y.-G. Sung, and Y. R. Do, “Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs,” Opt. Express20(S1), A1–A12 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited