OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10271–10282

Building up low-complexity spectrally-efficient Terabit superchannels by receiver-side duobinary shaping

Jianqiang Li, Martin Sjödin, Magnus Karlsson, and Peter A. Andrekson  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10271-10282 (2012)
http://dx.doi.org/10.1364/OE.20.010271


View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, an increasing interest has been put on spectrally-efficient multi-carrier superchannels for beyond 100G. Apart from orthogonal frequency-division multiplexing (OFDM) and Nyquist wavelength-division multiplexing (WDM), another low-complexity WDM approach based on transmitter-side pre-filtering and receiver-side duobinary shaping is proposed to build up multi-carrier superchannels. This approach is referred to as receiver-side duobinary-shaped WDM (RS-DBS-WDM). Generation and transmission of a 1.232-Tbit/s 11-carrier superchannel is experimentally demonstrated. The superchannel signal can be well fit inside the passband of multiple 300-GHz reconfigurable optical add and drop multiplexers (ROADMs). In the superchannel scenario, the proposed RS-DBS-WDM is qualitatively compared with OFDM and Nyquist-WDM in terms of implementation complexity. In sum, the proposed RS-DBS-WDM approach features high transceiver analog-bandwidth efficiency, high spectral-efficiency, the absence of specific spectral manipulation, compatibility with conventional WDM technologies and coherent detection algorithms, and comparable implementation penalty.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4230) Fiber optics and optical communications : Multiplexing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 11, 2012
Revised Manuscript: February 23, 2012
Manuscript Accepted: March 19, 2012
Published: April 19, 2012

Citation
Jianqiang Li, Martin Sjödin, Magnus Karlsson, and Peter A. Andrekson, "Building up low-complexity spectrally-efficient Terabit superchannels by receiver-side duobinary shaping," Opt. Express 20, 10271-10282 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10271


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol.29(4), 483–490 (2011). [CrossRef]
  2. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express17(11), 9421–9427 (2009). [CrossRef] [PubMed]
  3. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol.27(16), 3705–3713 (2009). [CrossRef]
  4. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2 Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” presented at the ECOC 2009, Vienna, Austria, Sep. 20–24, 2009, Paper PD2.6.
  5. J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi, and Y. Shao, “Generation of 112 coherent multi-carriers and transmission of 10 Tb/s (112x100Gb/s) single optical OFDM superchannel over 640 km SMF,” in Proc. OFC2011, Mar. 2011, Paper PDPA6.
  6. J. Yu, Z. Dong, J. Zhang, X. Xiao, H.-C. Chien, and N. Chi, “Generation of coherent and frequency-locked multi-carriers using cascaded phase modulators for 10Tb/s optical transmission,” J. Lightwave Technol.30(4), 458–465 (2012). [CrossRef]
  7. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010). [CrossRef]
  8. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express20(1), 317–337 (2012). [CrossRef] [PubMed]
  9. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol.30(4), 553–559 (2012). [CrossRef]
  10. R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9×138Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol.29(15), 2310–2318 (2011). [CrossRef]
  11. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, M. Belmonte, F. Forghieri, C. Muzio, S. Piciaccia, A. Brinciotti, A. L. Porta, C. Lezzi, S. Savory, and S. Abrate, “Investigation of the impact of ultra-narrow carrier spacing on the transmission of a 10-carrier 1Tb/s superchannel,” in Proc. OFC 2010, San Diego, CA, March 2010, Paper OThD3.
  12. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” to be published in J. Lightwave Technol.
  13. J. G. Proakis, Digital Communications, 4th ed. (New York McGraw-Hill, 2001).
  14. G. D. Forney., “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory18(3), 363–378 (1972). [CrossRef]
  15. H. Kobayashi, “Correlative level coding and maximum likelihood decoding,” IEEE Trans. Inf. Theory17(5), 586–594 (1971). [CrossRef]
  16. N. Alic, G. C. Papen, R. E. Saperstein, R. Jiang, C. Marki, Y. Fainman, S. Radic, and P. A. Andrekson, “Experimental demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600km-SMF link without optical dispersion compensation,” presented in OFC 2006, Anaheim, CA, March 2006, paper OWB7.
  17. N. Alic, M. Karlsson, M. Skold, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol.28(10), 1564–1572 (2010). [CrossRef]
  18. J. Li, E. Tipsuwannakul, M. Karlsson, and P. A. Andrekson, “Low-complexity duobinary signaling and detection for sensitivity improvement in Nyquist-WDM coherent system,” presented in OFC 2012, Los Angeles, CA, March 2012, Paper OM3H.2.
  19. I. Lyubomirsky, “Quadrature duobinary modulation for 100G transmission beyond the Nyquist limit,” in Proc. OFC 2010, San Diego, CA, March 2010, Paper OThM4.
  20. I. Lyubomirsky, “Quadrature duobinary for high-spectral efficiency 100G transmission,” J. Lightwave Technol.28(1), 91–96 (2010). [CrossRef]
  21. J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, and J. C. Rasmussen, “Spectrally efficient quadrature duobinary coherent systems with symbol-rate digital signal processing,” J. Lightwave Technol.29(8), 1098–1104 (2011). [CrossRef]
  22. R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. -S. Tsai, R. Malendevich, M. Missey, K. -T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in Proc. OFC2011, Mar. 2011, Paper OML7.
  23. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express17(24), 21350–21361 (2009). [CrossRef] [PubMed]
  24. J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol.30(4), 651–657 (2012). [CrossRef]
  25. K. Horikoshi, T. Kobayashi, S. Yamanaka, E. Yamazaki, A. Sano, E. Yoshida, and Y. Miyamoto, “Spectrum-narrowing tolerant 171-Gbit/s PDM-16QAM transmission over 1,200 km using maximum likelihood sequence estimation,” in Proc. ECOC 2011, Paper We.10.P1.73.
  26. M. Selmi, Y. Jaouën, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC 2009, Sep. 2009, Paper P3.08.
  27. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1164–1179 (2010). [CrossRef]
  28. V. M. Eyuboglu and S. U. Qureshi, “Reduced-state sequence estimation for coded modulation on intersymbol interference channels,” IEEE J. Sel. Areas Comm.7(6), 989–995 (1989). [CrossRef]
  29. S. Olcer, “Reduced-state sequence detection of multilevel partial-response signals,” IEEE Trans. Commun.40(1), 3–6 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited