OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10283–10294

Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide

Daiki Tanaka, Yuya Shoji, Masashi Kuwahara, Xiaomin Wang, Kenji Kintaka, Hitoshi Kawashima, Tatsuya Toyosaki, Yuichiro Ikuma, and Hiroyuki Tsuda  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10283-10294 (2012)
http://dx.doi.org/10.1364/OE.20.010283


View Full Text Article

Enhanced HTML    Acrobat PDF (1333 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a multi-mode interference-based optical gate switch using a Ge2Sb2Te5 thin film with a diameter of only 1 µm. The switching operation was demonstrated by laser pulse irradiation. This switch had a very wide operating wavelength range of 100 nm at around 1575 nm, with an average extinction ratio of 12.6 dB. Repetitive switching over 2,000 irradiation cycles was also successfully demonstrated. In addition, self-holding characteristics were confirmed by observing the dynamic responses, and the rise and fall times were 130 ns and 400 ns, respectively.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: January 23, 2012
Revised Manuscript: March 26, 2012
Manuscript Accepted: March 26, 2012
Published: April 19, 2012

Citation
Daiki Tanaka, Yuya Shoji, Masashi Kuwahara, Xiaomin Wang, Kenji Kintaka, Hitoshi Kawashima, Tatsuya Toyosaki, Yuichiro Ikuma, and Hiroyuki Tsuda, "Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide," Opt. Express 20, 10283-10294 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol.21(2), 384–405 (2003). [CrossRef]
  2. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol.24(12), 4433–4454 (2006). [CrossRef]
  3. M. Mizukami, J. Yamaguchi, N. Nemoto, Y. Kawajiri, H. Hirata, S. Uchiyama, M. Makihara, T. Sakata, N. Shimoyama, and K. Oda, “128×128 three-dimensional MEMS optical switch module with simultaneous optical path connection for optical cross-connect systems,” Appl. Opt.50(21), 4037–4041 (2011). [CrossRef] [PubMed]
  4. Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. Saad Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-based wavelength blocker array with channel-by-channel variable center wavelength and bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011). [CrossRef]
  5. R. C. Alferness, “Waveguide electrooptic switch arrays,” IEEE J. Sel. Areas Comm.6(7), 1117–1130 (1988). [CrossRef]
  6. K. Suzuki, T. Yamada, O. Moriwaki, H. Takahashi, and M. Okuno, “Polarization-insensitive operation of lithium niobate Mach-Zehnder interferometer with silica PLC-based polarization diversity circuit,” IEEE Photon. Technol. Lett.20(10), 773–775 (2008). [CrossRef]
  7. J. Ito, M. Yasumoto, K. Nashimoto, and H. Tsuda, ““High-speed photonic functional circuits using electrically controllable PLZT waveguides,” IEICE Trans. Electron,” E92-C, 713–718 (2009).
  8. Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehender interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett.21(16), 1118–1120 (2009). [CrossRef]
  9. M. Gustavsson, B. Lagerström, L. Thylén, M. Janson, L. Lundgren, A.-C. Mörner, M. Rask, and B. Stoltz, “Monolithically integrated 4 × 4 InGaAsP/InP laser amplifier gate switch arrays,” Electron. Lett.28(24), 2223–2225 (1992). [CrossRef]
  10. B. Stegmueller, E. Baur, and M. Kicherer, “15-GHz modulation performance of integrated DFB laser diode EA modulator with identical multiple-quantum-well double-stack active layer,” IEEE Photon. Technol. Lett.14(12), 1647–1649 (2002). [CrossRef]
  11. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express18(24), 25225–25231 (2010). [CrossRef] [PubMed]
  12. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express19(1), 47–54 (2011). [CrossRef] [PubMed]
  13. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express15(15), 9600–9605 (2007). [CrossRef] [PubMed]
  14. H. Tsuda, “Proposal of an optical switch using phase-change material for future photonic network nodes,” in Proceedings of 19th Symposium on Phase Change Optical Information Storage (Atami, Japan, 2007), pp. 39–42.
  15. Y. Ikuma, T. Saiki, and H. Tsuda, “Proposal of a small self-holding 2 × 2 optical switch using phase-change material,” IEICE Electron. Express5(12), 442–445 (2008). [CrossRef]
  16. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett.46(5), 368–369 (2010). [CrossRef]
  17. H. Dyball, “A matter of change,” Electron. Lett.46(5), 314 (2010). [CrossRef]
  18. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett.46(21), 1460–1462 (2010). [CrossRef]
  19. D. Tanaka, Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, and H. Tsuda, “Demonstration of 1000-times switching of phase-change optical gate with Si wire waveguides,” Electron. Lett.47(4), 268–269 (2011). [CrossRef]
  20. D. Tanaka, Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, and H. Tsuda, “Reversible switching of an optical gate based on Si rib waveguides with a Ge2Sb2Te5 thin film,” in Proceedings of 1st International Symposium on Access Space (Yokohama, Japan, 2011), GS3-B-2.
  21. H. Tsuda, D. Tanaka, T. Toyosaki, Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, and H. Kawashima, “Small-sized self-holding optical switch using phase-change material,” in Proceedings of International Conference on Transparent Optical Networks (Stockholm, Sweden, 2011), Mo.B5.3.
  22. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys.69(5), 2849–2856 (1991). [CrossRef]
  23. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater.6(11), 824–832 (2007). [CrossRef] [PubMed]
  24. D. Strand, D. V. Tsu, R. Miller, M. Hennessey, and D. Jablonski, “Optical routers based on ovonic phase change materials,” in Proceedings of European Phase Change and Ovonic Symposium (Grenoble, France, 2006).
  25. V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys.88(2), 657–664 (2000). [CrossRef]
  26. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys.89(6), 3168–3176 (2001). [CrossRef]
  27. T. Toyosaki, D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, Y. Ikuma, and H. Tsuda, “Phase change characteristics of Ge2Sb2Te5 thin film for a self-holding optical gate switch,” in Proceedings of Photonics West (San Francisco, CA, 2011), 7943–05.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited