OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10295–10309

Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells

Inkyu Moon, Bahram Javidi, Faliu Yi, Daniel Boss, and Pierre Marquet  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 10295-10309 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present an automated approach to quantify information about three-dimensional (3D) morphology, hemoglobin content and density of mature red blood cells (RBCs) using off-axis digital holographic microscopy (DHM) and statistical algorithms. The digital hologram of RBCs is recorded by a CCD camera using an off-axis interferometry setup and quantitative phase images of RBCs are obtained by a numerical reconstruction algorithm. In order to remove unnecessary parts and obtain clear targets in the reconstructed phase image with many RBCs, the marker-controlled watershed segmentation algorithm is applied to the phase image. Each RBC in the segmented phase image is three-dimensionally investigated. Characteristic properties such as projected cell surface, average phase, sphericity coefficient, mean corpuscular hemoglobin (MCH) and MCH surface density of each RBC is quantitatively measured. We experimentally demonstrate that joint statistical distributions of the characteristic parameters of RBCs can be obtained by our algorithm and efficiently used as a feature pattern to discriminate between RBC populations that differ in shape and hemoglobin content. Our study opens the possibility of automated RBC quantitative analysis suitable for the rapid classification of a large number of RBCs from an individual blood specimen, which is a fundamental step to develop a diagnostic approach based on DHM.

© 2012 OSA

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(090.1995) Holography : Digital holography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 24, 2012
Revised Manuscript: April 2, 2012
Manuscript Accepted: April 3, 2012
Published: April 19, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Inkyu Moon, Bahram Javidi, Faliu Yi, Daniel Boss, and Pierre Marquet, "Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells," Opt. Express 20, 10295-10309 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express13(12), 4492–4506 (2005). [CrossRef] [PubMed]
  2. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A24, 163–168 (2007). [CrossRef]
  3. I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface4, 305–313 (2007). [CrossRef] [PubMed]
  4. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A73A(10), 895–903 (2008). [CrossRef] [PubMed]
  5. R. Barer, “Interference microscopy and mass determination,” Nature169(4296), 366–367 (1952). [CrossRef] [PubMed]
  6. H. W. G. Lim, M. Wortis, and R. Mukhopadhyay, “Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics,” Proc. Natl. Acad. Sci. U.S.A.99(26), 16766–16769 (2002). [CrossRef] [PubMed]
  7. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967). [CrossRef]
  8. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  9. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer, 2005).
  10. U. Schnars and W. P. O. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002). [CrossRef]
  11. T. Kreis, Handbook of Holographic Interferometry (Wiley, 2005).
  12. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source,” Appl. Opt.38(34), 7085–7094 (1999). [CrossRef] [PubMed]
  13. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt.45(20), 4873–4877 (2006). [CrossRef] [PubMed]
  14. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three dimensional imaging and display using computational holographic imaging,” Proc. IEEE94(3), 636–653 (2006). [CrossRef]
  15. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39(23), 4070–4075 (2000). [CrossRef] [PubMed]
  16. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett.29(15), 1787–1789 (2004). [CrossRef] [PubMed]
  17. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express13(18), 6738–6749 (2005). [CrossRef] [PubMed]
  18. V. Micó, J. García, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett.34(10), 1492–1494 (2009). [CrossRef] [PubMed]
  19. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express18(13), 14159–14164 (2010). [CrossRef] [PubMed]
  20. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett.25(9), 610–612 (2000). [CrossRef] [PubMed]
  21. T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett.32(5), 481–483 (2007). [CrossRef] [PubMed]
  22. L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express16(1), 161–169 (2008). [CrossRef] [PubMed]
  23. P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt.14(1), 014018 (2009). [CrossRef] [PubMed]
  24. M. Mihailescu, M. Scarlat, A. Gheorghiu, J. Costescu, M. Kusko, I. A. Paun, and E. Scarlat, “Automated imaging, identification, and counting of similar cells from digital hologram reconstructions,” Appl. Opt.50(20), 3589–3597 (2011). [CrossRef] [PubMed]
  25. P. Marquet, B. Rappaz, E. Cuche, T. Colomb, Y. Emery, C. Depeursinge, and P. Magistretti, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett.30, 468–470 (2005). [CrossRef] [PubMed]
  26. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude and quantitative phase contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38(34), 6994–7001 (1999). [CrossRef] [PubMed]
  27. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt.45(5), 851–863 (2006). [CrossRef] [PubMed]
  28. R. C. Gonzalez and R. E. Woods, Digital Imaging Processing (Prentice Hall, 2002).
  29. T. Tishko, T. Dmitry, and T. Vladimir, Holographic Microscopy of Phase Microscopic Objects (World Scientific, 2011).
  30. B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt.14(3), 034049 (2009). [CrossRef] [PubMed]
  31. C. Rencher, Multivariate Statistical Inference and Application (Wiley, 1998).
  32. E. Gose, R. Johnsonbaugh, and S. Jost, Pattern Recognition and Image Analysis (Prentice Hall, 1996).
  33. F. A. Sadjadi and A. Mahalanobis, “Target-adaptive polarimetric synthetic aperture radar target discrimination using maximum average correlation height filters,” Appl. Opt.45(13), 3063–3070 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited