OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10330–10338

Ultrafast pump-probe microscopy with high temporal dynamic range

Matthias Domke, Stephan Rapp, Michael Schmidt, and Heinz P. Huber  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 10330-10338 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1066 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrafast pump-probe microscopy is a common method for time and space resolved imaging of short and ultra-short pulse laser ablation. The temporal delay between the ablating pump pulse and the illuminating probe pulse is tuned either by an optical delay, resulting in several hundred femtoseconds temporal resolution for delay times up to a few ns, or by an electronic delay, resulting in several nanoseconds resolution for longer delay times. In this work we combine both delay types for temporally high resolved observations of complete ablation processes ranging from femtoseconds to microseconds, while ablation is initiated by an ultrafast 660 fs laser pump pulse. For this purpose, we also demonstrate the calibration of the delay time zero point, the synchronization of both probe sources, as well as a method for image quality enhancing. In addition, we present for the first time to our knowledge pump-probe microscopy investigations of the complete substrate side selective ablation process of molybdenum films on glass. The initiation of mechanical film deformation is observed at about 400 ps, continues until approximately 15 ns, whereupon a Mo disk is sheared off free from thermal effects due to a directly induced laser lift-off ablation process.

© 2012 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.3390) Lasers and laser optics : Laser materials processing
(240.0310) Optics at surfaces : Thin films
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(100.0118) Image processing : Imaging ultrafast phenomena

ToC Category:
Ultrafast Optics

Original Manuscript: February 3, 2012
Revised Manuscript: March 22, 2012
Manuscript Accepted: March 26, 2012
Published: April 19, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Matthias Domke, Stephan Rapp, Michael Schmidt, and Heinz P. Huber, "Ultrafast pump-probe microscopy with high temporal dynamic range," Opt. Express 20, 10330-10338 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D Appl. Phys.39(3), 453–460 (2006). [CrossRef]
  2. J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252(13), 4814–4818 (2006). [CrossRef]
  3. S. Zoppel, H. Huber, and G. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys, A-Mater.89, 161–163 (2007).
  4. A. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. Lasers Eng.34(1), 15–45 (2000). [CrossRef]
  5. G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys, A-Mater.102, 173–178 (2011).
  6. B. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys, A-Mater.63, 109–115 (1997).
  7. C. Momma, B. Chichkov, S. Nolte, F. Von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun.129(1-2), 134–142 (1996). [CrossRef]
  8. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14(10), 2716–2722 (1997). [CrossRef]
  9. G. Heise, M. Dickmann, M. Domke, A. Heiss, T. Kuznicki, J. Palm, I. Richter, H. Vogt, and H. Huber, “Investigation of the ablation of zinc oxide thin films on copper-indium-selenide layers by ps laser pulses,” Appl. Phys, A-Mater.104, 387–393 (2011).
  10. A. Pique, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys, A-Mater.69, 279–284 (1999).
  11. G. Heise, J. Konrad, S. Sarrach, J. Sotrop, and H. Huber, “Directly induced ablation of metal thin films by ultrashort laser pulses,” Proc. SPIE7925, 792511, 792511-8 (2011). [CrossRef]
  12. M. Downer, R. Fork, and C. Shank, “Femtosecond imaging of melting and evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B2(4), 595–599 (1985). [CrossRef]
  13. D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci.154–155, 1–10 (2000). [CrossRef]
  14. J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys.103(5), 054910 (2008). [CrossRef]
  15. I. Mingareev and A. Horn, “Melt dynamics of aluminum irradiated with ultrafast laser radiation at large intensities,” J. Appl. Phys.106(1), 013513 (2009). [CrossRef]
  16. D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci.109–110, 1–10 (1997). [CrossRef]
  17. J. McDonald, J. Nees, and S. Yalisove, “Pump-probe imaging of femtosecond pulsed laser ablation of silicon with thermally grown oxide films,” J. Appl. Phys.102(6), 063109 (2007). [CrossRef]
  18. D. Dlott, “Ultra-low threshold laser ablation investigated by time-resolved microscopy,” Appl. Surf. Sci.197–198, 3–10 (2002). [CrossRef]
  19. D. Young, R. Auyeung, A. Pique, D. Chrisey, and D. Dlott, “Time-resolved optical microscopy of a laser-based forward transfer process,” Appl. Phys. Lett.78(21), 3169 (2001). [CrossRef]
  20. C. Unger, M. Gruene, L. Koch, J. Koch, and B. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys, A-Mater.103, 271–277 (2011).
  21. I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr,” Appl. Surf. Sci.208–209, 177–180 (2003). [CrossRef]
  22. I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci.247(1-4), 584–589 (2005). [CrossRef]
  23. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys, A-Mater.79, 767–769 (2004).
  24. M. Domke, G. Heise, I. Richter, S. Sarrach, and H. Huber, “Pump-probe investigations on the laser ablation of CIS thin film solar cells,” Physics Procedia12, 396–406 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited