OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10376–10381

Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays

Cheng-Wen Cheng, Mohammed Nadhim Abbas, Chao-Wei Chiu, Kun-Ting Lai, Min-Hsiung Shih, and Yia-Chung Chang  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10376-10381 (2012)
http://dx.doi.org/10.1364/OE.20.010376


View Full Text Article

Enhanced HTML    Acrobat PDF (1295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-dimensional metallic broadband absorbers on a SiO2/Ag/Si substrate were experimentally studied. The absorptivity of such structure can be increased by tailoring the ratio of disk size to the unit cell area. The metallic disk exhibits a localized surface plasmon polariton (LSPP) mode for both TE and TM polarizations. A broadband thermal emitter can be realized because the LSPP mode is independent of the periodicities. By manipulating the ratios and disk sizes, a high-performance, wide-angle, polarization-independent dual band absorber was experimentally achieved. The results demonstrated a substantial flexibility in absorber designs for applications in thermal photovoltaics, sensors, and camouflage.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3060) Physical optics : Infrared
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 5, 2012
Revised Manuscript: April 17, 2012
Manuscript Accepted: April 17, 2012
Published: April 20, 2012

Citation
Cheng-Wen Cheng, Mohammed Nadhim Abbas, Chao-Wei Chiu, Kun-Ting Lai, Min-Hsiung Shih, and Yia-Chung Chang, "Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays," Opt. Express 20, 10376-10381 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. B. Alici and E. Ozbay, “Photonic metamaterial absorber designs for infrared solar cell applications,” Proc. SPIE7772, 77721B (2011).
  2. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater.22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  3. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett.93(12), 121904 (2008). [CrossRef]
  4. X. Hu, M. Li, Z. Ye, W. Y. Leung, K.-M. Ho, and S.-Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett.93(24), 241108 (2008). [CrossRef]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  6. C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011). [CrossRef] [PubMed]
  7. E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95(4), 043113 (2009). [CrossRef]
  8. Y.-T. Chang, Y.-C. Lai, C.-T. Li, C.-K. Chen, and T.-J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express18(9), 9561–9569 (2010). [CrossRef] [PubMed]
  9. F. J. Rodríguez-Fortuño, M. Martínez-Marco, B. Tomás-Navarro, R. Ortuño, J. Martí, A. Martínez, and P. J. Rodríguez-Cantó, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Appl. Phys. Lett.98(13), 133118 (2011). [CrossRef]
  10. A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett.9(6), 2311–2315 (2009). [CrossRef] [PubMed]
  11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  12. W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett.11(1), 8–15 (2011). [CrossRef] [PubMed]
  13. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angular independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photon. Technol. Lett.20(13), 1103–1105 (2008). [CrossRef]
  14. C.-W. Cheng, M. N. Abbas, Z.-C. Chang, M. H. Shih, C. M. Wang, M. C. Wu, and Y.-C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO₂/Ag T-shaped array,” Opt. Lett.36(8), 1440–1442 (2011). [CrossRef] [PubMed]
  15. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011). [CrossRef] [PubMed]
  16. R. Siegel and J. Howell, Thermal Radiation Heat Transfer (Hemisphere Publishing Corporation, New York, 1981).
  17. P.-E. Chang, Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L. D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances,” Appl. Phys. Lett.98(7), 073111 (2011). [CrossRef]
  18. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009). [CrossRef]
  19. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  20. M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett.98(12), 121116 (2011). [CrossRef]
  21. T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev.3(2-3), 77–184 (1999). [CrossRef]
  22. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006). [CrossRef]
  23. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B84(7), 075102 (2011). [CrossRef]
  24. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Phys. Rev. Lett.96, 251104 (2010).
  25. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express19(15), 14260–14267 (2011). [CrossRef] [PubMed]
  26. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985).
  28. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006). [CrossRef]
  29. D. F. Swinehart, “The beer-lambert law,” J. Chem. Educ.39(7), 333–335 (1962). [CrossRef]
  30. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited