OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10399–10405

Strong exciton-photon coupling in microcavities containing new fluorophenethylamine based perovskite compounds

Y. Wei, J. S. Lauret, L. Galmiche, P. Audebert, and E. Deleporte  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 10399-10405 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We synthetize some new perovskite thin layers: p-fluorophenethylamine tetraiodoplumbate pFC6H4C2H4NH3)2PbI4 perovskite molecules, included in a PMMA matrix. We report on the optical properties of the perovskite doped PMMA thin layers and we show that these layers are much more stable under laser illumination and present a smaller roughness than the spin-coated (C6H5C2H4NH3)2PbI4 layers. These new layers are used as the active material in vertical microcavities and the strong-coupling regime is evidenced by a clear anti-crossing appearing in the angular-resolved reflectivity experiments at room temperature.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.3130) Materials : Integrated optics materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(230.0230) Optical devices : Optical devices
(230.4170) Optical devices : Multilayers
(240.5420) Optics at surfaces : Polaritons
(310.6860) Thin films : Thin films, optical properties

ToC Category:

Original Manuscript: November 11, 2011
Manuscript Accepted: January 12, 2012
Published: April 20, 2012

Y. Wei, J. S. Lauret, L. Galmiche, P. Audebert, and E. Deleporte, "Strong exciton-photon coupling in microcavities containing new fluorophenethylamine based perovskite compounds," Opt. Express 20, 10399-10405 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69, 3314–3317 (1992). [CrossRef] [PubMed]
  2. R. Houdré, “Early stages of continous wave experiments on cavity-polaritons,” Phys. Status Solidi B242, 2167–2196(2005). [CrossRef]
  3. H. Gibbs, G. Khitrova, and S. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics5, 275 (2011).
  4. M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001). [CrossRef] [PubMed]
  5. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4, 371–375 (2010). [CrossRef]
  6. D. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395, 53–55 (1999). [CrossRef]
  7. D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82, 3316–3319 (1999). [CrossRef]
  8. N. Takada, T. Kamata, and D. Bradley, “Polariton emission from polysilane-based organic microcavities,” Appl. Phys. Lett.82, 1812–1814 (2003). [CrossRef]
  9. S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101, 116401 (2008). [CrossRef] [PubMed]
  10. T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavitites at room temperature,” Phys. Rev. B57, 12428 (1998). [CrossRef]
  11. A. Bréhier, R. Parashkov, J. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett.89, 171110 (2006). [CrossRef]
  12. G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett.93, 081101 (2008). [CrossRef]
  13. S. Zhang, G. Lanty, J. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater.57, 3301–3309 (2009). [CrossRef]
  14. T. Ishihara, Optical Properties of Low Dimensional Materials (edited by T. Ogawa and Y. Kanemitsu, (World Scientific, 1995), chap. 6, p. 288.
  15. S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010). [CrossRef]
  16. K. Gauthron, J.-S. Lauret, L. Doyennette, G. Lanty, A. A. Choueiry, S. Zhang, A. Bréhier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte,“Optical spectroscopy of 2D layered (C6H5C2H4NH3)2PbI4,” Opt. Express18, 5912 (2010). [CrossRef] [PubMed]
  17. G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys.10, 065007 (2008). [CrossRef]
  18. T. Dammak, M. Koubaa, K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid, “Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial,” J. Phys. Chem. C113, 19305–19309 (2009). [CrossRef]
  19. K. Kikuchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Structure and optical properties of lead iodide based twodimensional perovskite compounds containing fluorophenethylamines,” Curr. Appl. Phys.4, 599 (2004). [CrossRef]
  20. N. Kitazawa, “Preparation and optical properties of nanocrystalline (C6H5C2H4NH3)2PbI4-doped PMMA films,” J. Mater. Sci.33, 1441–1444 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited