OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10426–10437

Direct measurement of the near-field super resolved focused spot in InSb

A.C. Assafrao, A.J.H. Wachters, M. Verheijen, A.M. Nugrowati, S.F. Pereira, H.P. Urbach, Marie-Francoise Armand, and Segolene Olivier  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 10426-10437 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Under appropriate laser exposure, a thin film of InSb exhibits a sub-wavelength thermally modified area that can be used to focus light beyond the diffraction limit. This technique, called Super-Resolution Near-Field Structure, is a potential candidate for ultrahigh density optical data storage and many other high-resolution applications. We combined near field microscopy, confocal microscopy and time resolved pump-probe technique to directly measure the induced sub-diffraction limited spot in the near-field regime. The measured spot size was found to be dependent on the laser power and a decrease of 25% (100nm) was observed. Experimental evidences that support a threshold-like simulation model to describe the effect are also provided. The experimental data are in excellent agreement with rigorous simulations obtained with a three dimensional Finite Element Method code.

© 2012 OSA

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(210.4245) Optical data storage : Near-field optical recording

ToC Category:
Optical Data Storage

Original Manuscript: February 1, 2012
Revised Manuscript: February 24, 2012
Manuscript Accepted: February 24, 2012
Published: April 20, 2012

A.C. Assafrao, A.J.H. Wachters, M. Verheijen, A.M. Nugrowati, S.F. Pereira, H.P. Urbach, Marie-Francoise Armand, and Segolene Olivier, "Direct measurement of the near-field super resolved focused spot in InSb," Opt. Express 20, 10426-10437 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett.44, 651–653 (1984). [CrossRef]
  2. M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, and N. Atoda, “High-speed optical near-field photolithography by super resolution near-field structure,” Jpn. J. Appl. Phys.38, L1079–L1081 (1999). [CrossRef]
  3. E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, and J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Appl. Phys. Lett.63, 3550–3552 (1993). [CrossRef]
  4. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt.36, 4339–4348 (1997). [CrossRef] [PubMed]
  5. W. H. Yeh and M. Mansuripur, “Evanescent coupling in magneto-optical and phase-change disk systems based on the solid immersion lens,” Appl. Opt.39, 302–315 (2000). [CrossRef]
  6. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an sb thin film,” Appl. Phys. Lett.73, 2078–2080 (1998). [CrossRef]
  7. J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys.39, 957–961 (2000). [CrossRef]
  8. J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006). [CrossRef]
  9. K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, “Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material insb,” Jpn. J. Appl. Phys.49, 08KE01 (2010). [CrossRef]
  10. K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010). [CrossRef]
  11. R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in sb–te alloys,” Appl. Phys. Lett.97, 161906 (2010). [CrossRef]
  12. S. Ohkubo, K. Aoki, and D. Eto, “Temperature dependence of optical constants for insb films including molten phases,” Appl. Phys. Lett.92, 011919 (2008). [CrossRef]
  13. M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys.43, L8–L10 (2004). [CrossRef]
  14. T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys.43, L88–L90 (2004). [CrossRef]
  15. J. S. Kim, K. Kwak, and C.Y. You, “Signal modulation of super read only memory with thermally activated aperture model,” Jpn. J. Appl. Phys.47, 5845–5847 (2008). [CrossRef]
  16. A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs,” SPIE7730, 77301J (2010). [CrossRef]
  17. G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, “Study of super-resolution read-only-memory disk with a semiconducting or chalcogenide mask layer,” Jpn. J. Appl. Phys.48, 03A064 (2009). [CrossRef]
  18. J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001). [CrossRef]
  19. A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Scalar readout model for super-rens focused spot,” J. Europ. Opt. Soc. Rap. Public.6, 11056 (2011). [CrossRef]
  20. T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001). [CrossRef]
  21. M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Inst.67, 1–18 (1996). [CrossRef]
  22. A. J. Wachters and H. P. Urbach, “Finite-element model for electromagnetic scattering problems,” Technical Note Phillips Research Europe, PR-TN 00042 (2008).
  23. X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A24, 866–881 (2007). [CrossRef]
  24. J. Pichon, “Super-resolution optical data storage,” Thesys (2009).
  25. A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “On the focused field embedded in a super rens medium,” Jpn. J. Appl. Phys.50, 102206 (2011). [CrossRef]
  26. M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited